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1 Introduction

This essay is about comonadic homology in semi-abelian categories.

Homological algebra appears in every area of Algebra: Group Theory, Commutative Al-
gebra, Algebraic Geometry, Algebraic Topology, and so forth. It can be used to measure
the exactness of a chain complex. In Category Theory, we defined homology in abelian cat-
egories, like the category AbGp of abelian groups or R-Mod of R-modules. Unfortunately,
the category of groups and the one of Lie algebras are not abelian.

In order to encompass those examples, semi-abelian categories are defined. Of course
abelian categories are semi-abelian, but Gp and LieAlg are semi-abelian as well. Semi-
abelian categories are defined as regular (to have an image factorisation) and pointed (to
be able to define kernels and cokernels). Moreover, in order to define homology in those
categories, they are required to be Barr exact, to have binary coproducts and that the
regular Short Five Lemma holds. We can prove (see chapter 2) that they are Mal’cev,
finitely cocomplete and that every regular epimorphism is normal. In semi-abelian cate-
gories, homology is defined in a similar way to abelian ones, but we need to assume that
the chain complex is proper (see section 2.7).

A fruitful way to construct a proper chain complex is to introduce simplicial objects.
In chapter 3, we define a simplicial object in any category as a diagram of the form

which satisfies some equalities called simplicial identities. If we work in a semi-abelian
category, such objects induce a proper chain complex, and so a homology. This homology
is studied in chapter 3.

A particular kind of simplicial object is the one arising from a comonad. Indeed, if
G is a comonad in an arbitrary category D, it induces a simplicial object GA for each
object A in D. To be able to compute its homology, we have to ‘push’ it forwards into a
semi-abelian category A. It can be done thanks to a functor £ : D — A. The induced
homology is then called a comonadic homology and is denoted by H, (A, E)g. A natural
issue about this homology is to know what happens if the parameters A, F or G change.
We shall see that it is actually a functor in A and F. But what about the third parameter?
The main goal of this essay will be to prove that H, (A, E)g and H, (A, E)x are naturally
isomorphic if G and K generate the same Kan projective class (theorem 4.10). The main
part of the work will be accomplished in chapter 3 where we shall prove a Comparison
Theorem (3.21) to create and compare maps between simplicial objects.

Fortunately, this homology is really useful in almost all algebraic subject of Mathematics.
Indeed, many well-known homology theories come from a comonadic homology, e.g. Tor
and Ext functors in Commutative Algebra, singular and simplicial homologies in Algebraic
Topology, integral group homology in Group Theory, and so forth.






2 Semi-Abelian Categories

As announced in the introduction, we are going to work in semi-abelian categories. In this
chapter, we define this notion and state its first few properties. In the last two sections
of this chapter, we define exact sequences and their homology in a semi-abelian category,
which will be useful in chapters 3 and 4.

2.1 Relations

In this section, we define the notion of a relation in a finitely complete category. We shall
need it to define exact and semi-abelian categories. It will be clear that the following
definitions are generalizations of the concept of relations as we know it in the category of
sets.

Definition 2.1. Let C be a finitely complete category and X,Y € ob C. A relation R

between X and Y is the data of two morphisms X b R e Y in C such that the

do,d . . . . . .
induced map R(O*;)X x Y is a monomorphism. A relation is said to be internal if

X =Y.

Example 2.2. If C = Set, (do,d1) is a monomorphism if and only if R is a subset of
X xY,ie Risarelation (in the usual sense) between X and Y.

d
Definition 2.3. Let C be a finitely complete category and R :;O X a (internal) relation
dy

1x,1 do,d
in C. We say that R is reflexive if X(g)X x X factors through R M X xX.

Example 2.4. If we go back to our example (i.e. C = Set), it is equivalent to the ‘usual’

definition of reflexivity. Indeed, R is reflexive if and only if there is a function X IR
such that dgh = dih = 1x. Or, equivalently, if and only if for all x € X, thereisar € R
such that (do(r),di(r)) = (z,x).

d
Definition 2.5. Let C be a finitely complete category and R :;O X arelationin C. R

di

is said to be symmetric if there exists a morphism R —Z= R such that dyoo = d; and
d1 o0 = do.

Example 2.6. Again, if C = Set, there is no difference between the usual notion of
symmetric relation and the categorical one. Indeed, the existence of such a ¢ is equivalent
to the the existence, for all couples (do(r),d1(r)) in the relation, of an ' € R such that
(d1(r),do(r)) = (do(r"),d1(r")), which is in the relation.
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d
Definition 2.7. Let C be a finitely complete category and R:;OX a relation in C.
dy

Let P be the pullback of dy along d:

Po R

p1 do

J<~—"T

|
HX
di

R is a transitive relation if there is a morphism P P2 R such that do o p1 = dpopo
and dy o ps = dq o py.

Example 2.8. This time, to prove the equivalence of the definitions of transitive relation
in C = Set, we can prove that P = {(rg,71) € R? | do(ro) = di1(r1)}. Therefore, such
a py exists if and only if for all pairs of couples (dy(r1),d1(r1)), (do(r0),d1(r0)) in the
relation with dy(r1) = do(ro), there is a element pa(rg,71) € R such that (do(r1),di(ro)) =
(do(p2(ro,m1)),d1(p2(ro,71))) is in the relation, i.e. if and only if R is transitive in the
usual way.

Definition 2.9. In a finitely complete category, a equivalence relation is a reflexive,
symmetric and transitive relation.

Example 2.10. In Set, the notion of equivalence relation is the same as the usual one.

As the following lemma says, we already know a lot of equivalence relations in any
finitely complete category.

Lemma 2.11. In a finitely complete category, every kernel pair is a equivalence relation.

Proof. This is straightforward from the definition of kernel pair.
O

This lemma leads us naturally to the following definition.

Definition 2.12. In a finitely complete category, a equivalence relation is said to be
effective if it is a kernel pair.

2.2 Definition and examples of semi-abelian categories

We are now able to define a semi-abelian category.

Definition 2.13. A regular category is a finitely complete category where every kernel
pair has a coequalizer and where pullbacks preserve regular epimorphisms.

Definition 2.14. A category is Barr exact if it is regular and if every equivalence relation
is effective.

Definition 2.15. A pointed category with kernels is called Bourn protomodular if it
satisfies the regular Short Five Lemma, i.e., if for all commutative diagrams

Ker fﬂA—f>B

Ker f,WA,?B,



2.2. Definition and examples of semi-abelian categories

where f and f’ are regular epimorphisms and k and b are isomorphisms, we have that a
is also an isomorphism.

Definition 2.16. A category A is semi-abelian when it is pointed, Barr exact, Bourn
protomodular and has binary coproducts.

Fortunately, an abelian category is semi-abelian (see example 2.18). But there are other

examples. The most frequent example of a semi-abelian category which is not abelian is
Gp.

Example 2.17. The category Gp of groups is semi-abelian. Indeed, we already know
that it is pointed, complete and cocomplete. Moreover, we know that every epimorphism

is normal and that the pullback of G I K along H B K is
P={(g,h) € G x H| f(g) = f'(h)}

with the canonical projections. So, if f is an epimorphism, P ——= H is also a (regular)
epimorphism. In addition, we can prove as we did for Set that an equivalence relation in
Gp is an equivalence relation in the usual sense which is compatible with the group law.
So, for each equivalence relation R < G x G, the congruence class of 1, [1], is a normal

subgroup of G and R is the kernel pair of G —— G/ 1] - It remains to prove that Gp

is Bourn protomodular. To do so, it is enough to prove that « is injective and surjective
which is straightforward since we can do it elementwise.

Example 2.18. Every abelian category is semi-abelian. Indeed, we already know that
such a category is pointed, finitely complete and cocomplete, Bourn protomodular and
pullbacks preserve (regular) epimorphisms. So it remains to show that every equivalence
relation is effective.

do
Let R—= X be an equivalence relation in an abelian category .A. Since this rela-
dy

tion is reflexive, there is a map X —>= R such that dos = dis = 1lx. Let us write
k = kerd; € A(K,R) and n = dok € A(K,X). If there is a map x such that nx = 0,
we deduce that dokz = 0 and dikz = 0. But (dg,d;) is a monomorphism, so kx = 0
and z = 0. This implies that n is a monomorphism. Let ¢ = cokern € A(X,Y). Thus
n = kerq. Moreover, we have that gdik = 0 = gn = qdpk. But di(1lx — sdy) = 0,
so 1x — sdy factors through k. Therefore qdi(1x — sd1) = qdo(1x — sdy) which implies
qdy; = qdy. Consider the kernel pair of gq.

R
di
\
51

do S——X
X

We know there is a unique map R —' - S such that s1t = di and sot = dg. Since ¢ is an
epimorphism, s; and sy are also epimorphisms. By definition of ¢ and k, sitk = d1k = 0.

[}

J
— =Y
q

Let’s prove that tk = kers;. Consider a map Z ——= S such that s;z = 0. Since

gs2z = ¢s12 = 0, there exists a morphism Z ——= K such that soz = nv = dokv = sotkv.
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But s1z = 0 = sitkv. Consequently, by definition of s; and s9, z = tkv. In addition,
n = dok = sstk is a monomorphism, so such a v is unique. Thus tk = ker s; and

commutes. Notice that since d; and s; are epimorphisms, the rows are exact. Thus we can

d
apply the Short Five Lemma and deduce that ¢ is an isomorphism. Therefore, R :O; X
dy

is the kernel pair of ¢ and the equivalence relation is effective.

Notice that we did not use the fact that the relation was symmetric and transitive.
Actually, in every semi-abelian category, reflexive relations are transitive and symmetric
(see section 2.4).

2.3 Image factorisation

In order to define exact sequences in semi-abelian categories, we need a image factorisation.
To do so, we only need to work with regular categories.

q1
Lemma 2.19. Let A be a category with kernel pairs and their coequalizer. If Q —= A
gz

is the kernel pair of f € A(A, B) and if A —P I is the coequalizer of ¢; and ¢o, then

q1
Q —= A is the kernel pair of p.
a2

Proof. We know that pq; = pgs. Since fqi = fqqo, there is a morphism [ '~ B such
that ip = f.

q1 P
—ZA——1]

TN

B
Let Z é A be two morphisms such that px = py. Thus, fx = ipx = ipy = fy. Since
y

q
QQ —= A is the kernel pair of f , there is an unique morphism Z ——=Q such that
q2

a
gm =x and gom =y. So Q —= A is the kernel pair of p.
a2

Here is the expected image factorisation.

Proposition 2.20 (Image Factorisation). Let A be a regular category. Every morphism
f € A(A, B) can be written as f = ip, where i is a monomorphism and p a regular
epimorphism. Moreover, this factorisation is unique up to isomorphism.



2.3. Image factorisation

Proof. Let Q :1; A be the kernel pair of f and A P2 T the coequalizer of ¢; and

q
q2

q2- By definition, p is a regular epimorphism. Since fq; = fqo, there is a unique map

I —"> B such that f = ip. So, it remains to show that i is a monomorphism.

q1 P
—ZA——1]

TN

B

T

Let R :1; I be the kernel pair of ¢ and [ kK the coequalizer of r1 and ro. Let’s
T2

7l
prove that Q —= A is the kernel pair of kp: Firstly, we know that kpqy = kpgs. Now,
q2

suppose there are two maps 2 é A such that kpz = kpy.
y

Z\
q1
y Q*>A
q2i kp
A—sK
kp

But, by lemma 2.19, R r:;l I is the kernel pair of k. So there is a morphism Z —== R
T2

such that r1z = pr and roz = py.

7z
T1 I

by
T2 \Lk

K

~N<—

|

Hence, fo = ipx = irz = irez = ipy = fy. Therefore, there is a unique map 7 —— Q

such that ¢ym = x and gom = y.
VA
€T
Xz\\
a

N 9T

@l

A

f
B

|

q1
So we have just proved that Q —= A 1is the kernel pair of kp. But we know that
a2

pq1 = pgo. This implies that there is a morphism K —— I such that nkp = p. Since p is
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a (regular) epimorphism, we deduce that nk = 1; and thus k is a monomorphism. Since A
is a regular category, pullbacks preserve monomorphisms and regular epimorphisms. Recall

-
that R :;1 I is the kernel pair of k. Therefore, r1 and r9 are both monomorphisms and
T2

T
regular epimorphisms. So, they are both isomorphisms. But by definition R*% I is
T2

the kernel pair of ¢. So this can happen only if ¢ is a monomorphism. Indeed, there is
a morphism I —— R such that 7 = 1; = 7ror. Thus r; = ry since they are both

Cc1
isomorphisms. Therefore, if there are two maps C —= I such that ic; = ico, there is a
c2

map C —= R with ¢; = ri¢c = roc = co.

For uniqueness, suppose there are morphisms A4 —— I’ — . B such that f=ip,is
a monomorphism and p’ a regular epimorphism. We know that i'p'qy = fq1 = fqo = i'p'qo,
a j
and so p'g1 = p'ga. But p is the coequalizer of Q ——= A . Thus there is a map [ ——= I’
q2
such that jp = p’.

a »
Q——=A——1

q2
\ ij
p
I/
1
Since p’ is a regular epimorphism, we can find two arrows X —= A which have p’

€2
. . I _ . ..
as coequalizer. So we have ipr; = i'p'x1 = i'p'ze = ipro and pxy = pxo since i is a

monomorphism. Therefore, there is a map I’ —— I such that j'p’ = p.

Xy Vo

RN

1

Thus j5'p’ = jp = p’ and jj' = 1 since p’ is an epimorphism. We can prove in a similar
way that j'j = 17, hence j and j’ are isomorphisms. Finally, ip = i’jp. Thus ¢ = ¢'j and
the factorisation is unique up to isomorphism.

O
This proposition leads us to the following definition.

Definition 2.21. Let A L B be a morphism in a regular category A. If f = ip with
i € A(I, B) a monomorphism and p € A(A, I) a regular epimorphism, we know that p is
the coequalizer of the kernel pair of f. We call ¢ and p respectively the image and the
coimage of f and we write ¢ = im f, p = coim f and I = Im f. This factorisation is called
the image factorisation of f.

As in the abelian case, we can prove the following property of the image factorisation.

Proposition 2.22. In a regular category A, the image factorisation is functorial, i.e. if
we have a commutative diagram
f

A——DB

|

A ——= DB
f/



2.3. Image factorisation

with A—2>7—>B and A2 ~7 "~ B the image factorisations of f and f’

respectively, then there is a unique morphism [ —2 o I’ such that

AL .7 ".B

| b
A/*)I/HB/

P K3

commute.

Proof. Let Q4>A and @’ 4>A’ be the kernel pairs of f and f’ respectively. We
a5

know that their coequahzers are p and p’ respectively. Since f'aqy = bfq1 = bfq = f'aqo,
there is a morphism @ I, Q' such that ¢jg = ag1 and ¢bg = aqa.

Q
\g\ aqi
@
g Q/ - Al
0l
Al——s B
f/

Therefore, we can compute p'aqi = p'qig = p'dhg = p'aga. Thus, since p is the coequalizer
q1 j
of Q—= A, there is a unique morphism I — 2. 1" such that jp = p'a. Finally, to
q2
prove that i’ = bi, it is enough to show that ¢’ jp = bip since p is an epimorphism. But
i'jp =1i'p'a = f'a = bf = bip which concludes the proof.
]

Recall that in an arbitrary category, if gf is a regular epimorphism and f is an epimor-
phism, it follows that ¢ is a regular epimorphism. As corollary of the last proposition, in
a regular category, we do not need the assumption that f is an epimorphism.

Corollary 2.23. If gf is a regular epimorphism in a regular category, then g is a regular
epimorphism.

Proof. Let g = ip the image factorisation of g. Of course, the image factorisation of gf is
1o(gf). So, by proposition 2.22, there exists a morphism j making the following diagram
commute.

A c—¢
f lf

%

Thus ¢ = 1¢, so ¢ is a split epimorphism and a monomorphism. Hence ¢ is an isomorphism
and g a regular epimorphism.
O



2. Semi-Abelian Categories

2.4 Finite cocompleteness

Another interesting property that a category may have is completeness or cocompleteness.
We already know that semi-abelian categories are finitely complete. In this section, we
state that they are actually finitely cocomplete. To show this, one can use the fact that
they are Mal’cev. This property will also be useful further in the essay. For brevity, we
do not prove these propositions here.

Definition 2.24. A finitely complete category is said to be Mal’cev if each reflexive
relation is an equivalence relation.

Proposition 2.25. [4, Proposition 5.1.2]
Every semi-abelian category is Mal’cev.

Proposition 2.26. [3, Proposition 3.10]
Every semi-abelian category is finitely cocomplete.

2.5 Equivalences of epimorphisms

In this section, we shall see that in a semi-abelian category, the notions of strong, regular
and normal epimorphisms are equivalent.

Proposition 2.27. [4, Corollary A.5.4.1]

Let A I B be a morphism in a regular category .A. Then f is a strong epimorphism
if and only if it is a regular epimorphism.

This proposition has a corollary which is really useful when we work with image fac-
torisation. We shall not always refer to it when it is used.

Corollary 2.28. In a regular category, the composition of two regular epimorphisms is a
regular epimorphism.

Proof. 1t is enough to show that if f € A(A, B) and g € A(B, C) are strong epimorphisms,
then so is gf. But this is proposition A.4.5.2 in [4].
]

Now, if we come back to our factorisation, we can prove that in the case where A is
semi-abelian (not only regular), we actually have a (normal epi - mono) factorisation.
Indeed, we can prove that every regular epimorphism is normal.

Proposition 2.29. In a semi-abelian category, every regular epimorphism is a normal
epimorphism.

Proof. Let B .C bea regular epimorphism in A, a semi-abelian category. Let
q = coker(kerp) € A(B,C"). We have to prove that p and ¢ are isomorphic. Since ker p
is a normal monomorphism, ker ¢ = ker(coker(ker p)) = kerp. By definition of ¢ and since

poker p = 0, there is a unique morphism C’ —"= C' such that mq = p. Let A é B and
y

A’ === B be the kernel pairs of p and g respectively. Since pz’ = mqr’ = mqy’ = py/,

Y

10



2.5. Equivalences of epimorphisms
there is a morphism A’ —%= A such that za = 2’ and ya = v/'.

S\

A

-~ B
"
Yy p

Moreover, since po0 = 0 = poker p, there is a unique map Kerp —* . A such that 2k = 0

and yk = kerp. Because kerp = ker ¢, we have also a unique map Kerp KA such
that 'k’ = 0 and 'k’ = ker p.

Kerp

/

AR

ker p N
y’l lq
!

But we know that zak’ = 'k’ = 0 and yak’ = y'k' = ker p. So ak’ = k. Let’s prove that
k = ker x: We know that zk = 0. Suppose there is a map Z ——= A such that zz = 0.

Z

%

—— A

O <—
-%

So pyz = prz = 0. Hence, there is a unique map Z —~= Kerp such that (kerp)ow = yz.
yz
B

(i) »

C

N
//
=~
@
L3
3
<

Thus, ykw = (kerp) ow = yz. But since A :x; B is the kernel pair of p, z = kw (the
y

following diagram commute).

A—==B
_
Yy p

11
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But if there is another Z —~ Ker p such that z = kw’, we would have yz = ykuw' =
(ker p) o w’ and so w = w’ by uniqueness of w. So k = ker z. By a similar reasoning, we
prove that k' = ker 2/. Therefore, this diagram commute.

Kerp>L> Ao B

;

Kerp>k—>A7»B

In addition x and 2’ are regular epimorphisms since they are the pullback of p and ¢
respectively and A is regular. Therefore, by the regular Short Five Lemma, a is an

isomorphism. So, by definition of a, A’ i; B is the kernel pair of p. So we know

Y

that A’ x:; B is the kernel pair of p and g and that p and ¢ are regular epimorphisms.
,y/

Therefore, by the image factorisation, we conclude that p and g are both the coequalizer

of A/=——=B and so they are isomorphic.

/

y
O

As corollary, we can now prove two lemmas we have seen in the case of abelian categories.

Lemma 2.30. In a semi-abelian category, a morphism A AN B is a monomorphism if
and only if Ker f = 0.

Proof. If f is a monomorphism, it suffices to notice that fg = 0 if and only if ¢ = 0.
Conversely, suppose Ker f = 0. Let f = ip be the image factorisation of f. Since
ker f = 0—— A, we know that kerp = 0——= A . But p is a normal epimorphism.
So, p = coker(ker p) = coker(0 —— A ) = 14 and f =i is a monomorphism.

O

Lemma 2.31. In a semi-abelian category, pullbacks reflect monomorphisms.

Proof. Consider a pullback square where m is a monomorphism and take the following
kernels:

0=Kerm—m _p_m._p

la ol

Ker f for f A 7 C

By a well-known result about kernels and pullbacks (see lemma 4.2.4 in [4]), the induced
map a is an isomorphism. So Ker f = 0 and f is a monomorphism.
O

2.6 Exact sequences
Thanks to the (normal epi - mono) factorisation, we can define exact sequences and prove

their properties in a similar way that one can do for abelian categories. We recall them
here.

12



2.6. Exact sequences

Definition 2.32. In a semi-abelian category A, a short exact sequence (s.e.s.) is a

sequence of morphisms

f

0 A B> 0 (2.1)

such that f = ker g and g = coker f.

Definition 2.33. In a semi-abelian category, a sequence A L B2+ (C is exact at
B if im f = kerg.

Definition 2.34. In a semi-abelian category, a sequence - A,y ——= A, ——= A1+
is exact if it is exact at each internal A,,.

There is a well-known link between exactness of a sequence and its image factorisation.

Lemma 2.35. If A I B—2-C isa sequence in a semi-abelian category, and if f = ip

and g = jq are the image factorisations of f and g, then A N B—2+(C is exact if

and only if 0 I—~B-1sJ 0 is a short exact sequence.

Proof. Let us proof the ‘if” part:
We know that i = ker ¢ and ¢ = cokeri. So jqi = 0. If Z—-= B is such that jgz =0,

Z

_‘.B

;

— =

then gz = 0 since j is a monomorphism. Thus, there is a unique map Z —— I such that
im = z because i = ker q. Therefore, i = ker jqg = kerg and A N B—2+(C is exact.
For the ‘only if’ part, we know that ¢ = kerjq. So qi = 0 since jgi = 0 and j is a
monomorphism. Suppose there is a map X ——= B such that gz = 0.
\
_i.pB

I
L
0

— s J

X

So jqx = 0. Thus, there is a unique map X ——= I such that in = . Therefore, i = ker q.
But ¢ is a normal epimorphism. So g = coker(ker ¢) = cokeri and we have proved that

0 —.p_ 1

J 0 is a short exact sequence.
O

There are many examples of exact sequences.

Lemma 2.36. In a semi-abelian category, the following equivalences hold:

1. 0——=A N B is exact if and only if f is a monomorphism.

13
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2. B—2~(C——0 is exact if and only if g is a normal epimorphism.

3. 0 at.p_? C is exact if and only if f = kerg.

4. A ! B-2-C 0 is exact if and only if g = coker f and im f is a normal
monomorphism.

5.0 A ! B—2-¢C 0 is exact if and only if it is a short exact sequence.

6. 0 A ! B 0 is exact if and only if f is an isomorphism.

Proof. Since 0 ——= A is a monomorphism, the first equivalence is exactly the one given
given by lemma 2.30. For the second one, notice that ker(C' ——=0) = 1¢ and ¢ is a
normal epimorphism if and only if im g = 1¢. The third equivalence follows from the first
one.

Let’s prove the fourth equivalence: For the ‘only if’ part, let f = ip be the image
factorisation of f. We know that ¢ = ker g and g is a normal epimorphism by the second
equivalence. So, 7 is a normal monomorphism. But since p is an epimorphism, coker f =
cokeri. So g = coker(ker g) = cokeri = coker f. For the ‘if’ part, again, let f = ip be
the image factorisation of f. We know that coker f = coker: and i = ker(cokeri). So,
i = ker(cokeri) = ker(coker f) = ker g and g is a normal epimorphism since g = coker f.

Moreover, the third and fourth equivalences imply the fifth one. (Notice that if f = ker g,
then im f = f = ker g is a normal monomorphism). Finally, the last equivalence is implied
by the first and second one. Indeed, if f is an isomorphism, f is a normal epimorphism
since coker(ker f) = coker(0 —— A ) = f.

O

2.7 Homology of proper chain complexes

Now, let’s define the notion of homology. As for abelian categories, homology ‘measures’
the exactness of sequences. Unfortunately, to make the theory work, it is not enough
to assume that the sequence is complex. Indeed, we have to make the assumption that
morphisms are ‘proper’.

Definition 2.37. A morphism f in a semi-abelian category is a proper morphism if
im f is a normal monomorphism.

Definition 2.38. A complex (or chain complex) in a semi-abelian category A is a
sequence of morphisms

dn n
e n+1i>0n4d>cn71*>...
such that d,d,y1 = 0 for all n € Z. A complex is called a proper chain complex
if d,, is a proper morphism for all n € Z. We denote by Ch.A the category which has
chain complexes in A4 as objects and a morphism f € ChA(C,, D,) is the data of maps
fn € A(Cy, Dy,) for all n € Z such that

dn+1 dn

Cn—i— 1 Cn

fn+1l ifﬂ lfn—l

Dn+1 Dy, Dy 4 ——---

14



2.7. Homology of proper chain complexes

commutes. Let PCh A be the full subcategory of Ch A of proper chain complexes.
We can prove some useful lemmas to identify proper morphisms.

Lemma 2.39. Let A be a semi-abelian category, f € A(A, B) and m € A(B, C) such that
m is a monomorphism and mf is a proper morphism. Then f is also a proper morphism.

Proof. Let f = ip be the image factorisation of f. So, since m is a monomorphism,
mi = im(mf) and mi is a normal monomorphism. Suppose mi = ker g where g € A(C, D).

So gmi = 0. If there is a map Z —— B such that gmz = 0,

Z

—_'.B

gm

O=<—M~

— =D

then there is a unique map Z —=1I such that miw = mz, i.e. iw = z. So i = ker(gm)
and f is a proper morphism.
[

In order to prove another lemma about proper morphisms, we have to show the following
one.

Lemma 2.40. Let A be a semi-abelian category, f € A(A,B) and g € A(A,C) two
regular epimorphisms and the following diagram their pushout.

A2 ¢

f q
-

B—>Q

If P is the pullback of ¢; and ¢o and if e is the unique map making

A
X\
P2
o]t o
B q2 Q

commute, then e is a regular epimorphism.

f g
Proof. Let F :;1/1 and G :ilA be the kernel pairs of f and g respectively. So
f2 92

we know there exist two morphisms A ~ Y F and A—2-G such that fra1 = foaq =
gias = goas = 14. Consider M the pullback of fo and g; and let n be the arrow making

15



2. Semi-Abelian Categories

the following diagram commute.

G
g1

_
.
f2

N

Let ip be the image factorisation of M rengzua)_ A x A . Since the image factorisation is

functorial (proposition 2.22) and (fiu, gouz)n = (14,14), there is a morphism n’ making
the diagram

A g U)o
M I Ax A
p 7

11
commute. So, if we set i = (i1,42), the relation I —=% A is reflexive. But since A is
12

Mal’cev (proposition 2.25) and Barr exact, there exists a morphism A — '~ D such that

7
1 :;1 A is the kernel pair of t. Moreover, by lemma 2.19, we can suppose t to be the
12

coequalizer of ¢; and i3. Consider now the map G LA making the diagram

G
\k‘\ g1
g1 FLA
_
fli J{f
A——2B
f

commute. Since fok = g1, there is a morphism G —Ls M such that the following diagram
commutes.

G
9

A

M
|
F

Hence the morphism G —-= M (i g2uz) A x A is nothing but (g1, 92). Thus g1 = i1pl

and go = i9pl. So, tg1 = tge. Recall from definition 2.21 that, since g is a regular
epimorphism, it is the coequalizer of its kernel pair. Consequently, we can find a map

16



2.7. Homology of proper chain complexes

C —"= D such that rg = t. Similarly, there is a map B —>= D such that sf = t.

g1 g S f
G——=A—=C F—=A—-21B
92 f2
t ¢
D D
Let’s prove that
A—2sC (2.2)

Z

is a pushout square. Suppose that B ——=7 and C Y5 7 are two maps such that
zf = yg. So we can compute

ygiip =z f frua
=zf four
= Ygg1u2
= Ygg2u2
= Ygiap.

This implies ygii, = ygis. Keeping in mind that t is the coequalizer of i; and i, we
know there is a unique map D —>= Z such that zt = yg. But this occurs if and only if
zrg = yg and zsf = xf which happens if and only if zr = y and zs = z. Therefore, the

square (2.2) is a pushout. So we can assume C 2. Q =C—+D and B—2-Q =

B —2s D . Now we shall use the fact that a composition of two regular epimorphisms
is a regular epimorphism (corollary 2.28) and the well-known property saying that if a
rectangle diagram is made of small pullback squares, then it is a pullback (see proposition
2.5.9 in [2]). So, consider the following diagram where all rectangles are pullbacks.

I— 2w 24
|7 o=
V] w1 g
v-—2.p-2.0
T
v1 p1 T

Since sf = rg = t, i1 = viv] and ia = wyv). Finally, if we keep in mind that pullbacks

17



2. Semi-Abelian Categories

preserve regular epimorphisms, we can compute

im(f,g) = im(fg1u2, gg1u2)
= im(f four, gg1u2)

= im(f fiu1, ggou2)

im (

im (

= im(fi1p, giap)

= im(fi1, giz)
(
(
(

im(fo1v], gwavh)
P1w1U§7p2w1U/2)

im(p1, p2)

(p1,p2),

= 1um

which proves that (f, g) = (p1, p2)e is the image factorisation of A ) B x C . Therefore

e is a regular epimorphism.

O]

Now we are able to prove that, if f = pi (rather than ip in the image factorisation) with
7 and p normal, then f is proper.

Lemma 2.41. Let f € A(A, B) where A is a semi-abelian category. If f = p'i’ where p/
is a normal epimorphism and ¢ a normal monomorphism, then f is a proper morphism.

Proof. Let f = ip be the image factorisation of f. We have to show that i is a normal
monomorphism.

1

|

i
IIH/B

p

AL

Let e = cokerd’ € A(I',C). Since ¢ is a normal monomorphism, i" = kere. Consider @
the pushout of e and p’. Denote by P the pullback of this pushout.

14 p1

I'-*-p r-".B
oo
e q1 b2 q1
f
C q2 Q C q2 Q

Let I' —"~ P be the unique map such that pth = p’ and psh = e. By lemma 2.40, h
is a regular epimorphism. Now let & = kerpy € A(K, P). We are going to prove that
p1k = kerq;. First notice that gip1k = gopsk = 0. Now suppose that there is a map
7 —== B such that ¢;z = 0. So we know the existence of a morphism Z ——= P such
that pym = z and pom = 0.

18



2.7. Homology of proper chain complexes

Therefore there is a map Z —— K satisfying kn = m and so pikn = z. But if
p1kx = p1ky for some maps x and y, this implies kx = ky since pokx = 0 = poky and P is
a pullback. So x = y and p1k is a monomorphism. So there is only one n with pikn = 2
and we can conclude that p;k = ker ¢;. Now, notice that ¢q1ip = q1p't' = goei’ = 0. Thus

q1% = 0. So there is a map ¢ making
i
X\
pik

—

K B

|
q1

0 Q

_—

commute and ¢ is a monomorphism as 7 is. But piktp = ip = p'i’ = pihi’ and
poktp = 0 = ei’ = pohi’. Consequently, ktp = hi'.

AL p_c ¢

o b

Since 1¢ is a monomorphism, by lemma 4.2.4 in [4], we know that the left-hand square is
a pullback. But h is a regular epimorphism and pullbacks preserve them in a semi-abelian
category. So tp is a regular epimorphism. Therefore ¢ is a regular epimorphism. But since
it is a monomorphism, it is a isomorphism. So ¢ = ker ¢; which is a normal monomorphism.

O

Now, let’s define the homology of a proper chain complex.

dn+1 dn

Definition 2.42. Let Cy = --- Chi1 Chn
chain complex in a semi-abelian category A. If d/,,; is the unique morphism such that
kerdy, od;,_ | = dpy1, we denote by H,(C,) the object Cokerd,,  ; and we call it the n*"
homology of C,.

Ch-1 --+ be a proper

dn+1 dn

Crit c, Cos (2.3)
Ay %:”
Kerd,
lcoker d;L_H
Hy,(C,)
f
If Co——=D,,
dn n
Cnt1 & Cn a Chqg——--

fn+1l lfn J{f'nl

Dn+1 ent1 Dn en Dn—l >

we can define H,(f) € A(H,(C,), H,(D,)) as the unique map such that H,(f)ocokerd;, ,,
= coker e;l_H o Zn,f where Z, f is the map such that kere, o Z, f = f, okerd,. So we have
defined a functor H,, : PCh A — A for all n € Z.

19



2. Semi-Abelian Categories

We could have defined the homology dually.

Lemma 2.43. [10, Proposition 2.3]
Let Cq be a proper chain complex in a semi-abelian category. If d! is the unique map
such that d!! o coker d,,+1 = d,,, then Kerd!! = H,(C,).

d d
Cn . Cn—l
\ k,V Wn-‘q y
d;z-t,-l

n+1

Crt1 (2.4)

Kerd,, Coker d,, 41
lcoker d;, 11 ker d! T
Hy,(C,) Hy,(C,)

Due to this lemma, we could have also defined the action of H,, on the arrows of PCh A
dually.
The following proposition explains why homology ‘measures’ exactness.

Proposition 2.44. Let C, be a proper chain complex in a semi-abelian category. C, is
exact at Cy, if and only if H,(C,) = 0.

Proof. Let dp+1 = ip be the image factorisation of dy, 1. So d,i = 0 and there is a unique
map m such that ker d, om = 4. Since ¢ is a monomorphism, m is also a monomorphism.
Moreover, we know that d,1 is a proper morphism. So ¢ is a normal monomorphism and
by lemma 2.39, m is a normal monomorphism. In addition, we know that mp = d;, ;.
But since p is an epimorphism, cokerd;, , ; = coker(mp) = cokerm.

dn+1 dn

Cn-‘,— 1 Cn

i
p
\ @1

I~ 2 Kerd,

Xke:m

H,(C,)

Cn—l

C, is exact at C), if and only if i = ker d,,, i.e. if and only if m is an isomorphism. But if m is
an isomorphism, H,(C,) = Coker m = 0. Conversely, if Coker m = 0, since m is a normal
monomorphism, m = ker(coker m) = ker( Kerd,, —— 0 ) which is an isomorphism.

O
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3 Simplicial Objects

At the end of chapter 2, we defined the homology of a proper chain complex. In this
chapter, we are going to introduce simplicial objects. As we shall see, these objects induce
a proper chain complex, and therefore homology functors. The aim here is to prove a
Comparison Theorem to create maps between simplicial objects and compare their image
under the induced homology functors.

3.1 Simplicial objects and their homology

In this section, we define simplicial objects and their induced homology. We also give the
first properties of this homology. For any natural number n € Ny, let us fix the set [n] to
be [n] ={0,...,n}.

Definition 3.1. In a category A, a simplicial object A is the data of a sequence

(Ap)nen, C ob A together with morphisms A, i>An_1 for each i € [n] and n € N
called face operators

— s
LT _—_—= —_—>
H.AQ A1*>A0

and with morphisms A, i>An+1 for each ¢ € [n] and n € Ny named degeneracy
operators satisfying
0; o 8j = 6j,1 00; ifi< 7 (31)

JZ‘OJj:Uj+1OUZ‘ 1fz<g, (32)

0j—10 0; ifi< 7
Oiooj =414, ifi=jori=j5+1 (3.3)
05 005—1 ifi>j+1
called the simplicial identities. We write S.A for the category of simplicial objects

where a morphism A*f>IBS is the data of f, € A(Ay, By) for all n € Ny such that
Jn—100; = 0.o fy forall n € N and i € [n] and f, 0 0; = o} o f,—; for all n € N and
i € [n —1]. Morphisms in S A are also called simplicial maps. If the f,’s commute
appropriately only with the face operators (the 0;’s), we say it is a semi-simplicial map,
whereas the induced subcategory is denoted by S’ A.

We can also define some particular elements in S A.

Definition 3.2. An augmented simplicial object is a simplicial object A with an

additional map Ay S A_1 such that Jy o 0y = Jy 0 01. An augmented simplicial
map between two augmented simplicial objects is the data of f, € A(A,,B,) for all
n > —1 which is a simplicial map and such that f_; 00y = 9} o fo. This form a subcategory
of S A denoted by AS.A. As above, if the f,,’s commute only with the face operators, we
call it an augmented semi-simplicial map and we write AS’ A for the corresponding
subcategory.
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3. Simplicial Objects

A right-contractible augmented simplicial object is an augmented simplicial ob-
ject for which there exist maps A, e Ap41 for n > —1 such that 0,41 0hy, = 14, and
O;ohy ="hy_100; for all i € [n]

.
A —= A —ZAg—= A

h2 hl ]’LQ h*l
Similarly, a left-contractible augmented simplicial object is an augmented simplicial

object for which we can find morphisms A, i Apy1 forn > —1 such that dpoh,, =14,
and J;o hy, = hp—100;—1 forallie {1,...,n+ 1}.

Given a simplicial object A in a semi-abelian category A, let us write N_,A = 0 for

99 jein—
n € N, NgA = Ay and N, A = Ker A, el A?_, for n € N. Thus, if n > 2, the
ker (05) ;1 : (05) :cin_
map N,A il A, On A1 e AZ:% is 0 since for all 7 € [n — 2],
i © (aj)je[n—z] o O, o ker (0]-)].6[”_1] = 0; 0 Oy, o ker (aj)je[n_l]
— an,1 O 81 O ker (3j)je[n_1]
= 1070 (8j)j€[n—1] o ker (aj)je[n_”

=0.

Therefore, there is a unique map NnALNn_lA such that ker (0;) od, =

Oy, o ker (0;)

j€M—2]

jeln—1]" Hence, we can define the Moore complex as follow.

Definition 3.3. If A is a simplicial object in a semi-abelian category, we write N_,A = 0,

) jein—
NoA = Ay and N,,A = Ker A4, el A", for n € N. The Moore complex (or
dn . dn
normalised chain complex) is the chain - -- A N, A d N,_1A =L ... where dp

is the map induced by 9, o ker (9;) . if n > 0. We denote the Moore complex of A by

j€n—1]
N(A).
As expected, the Moore complex is a proper chain complex.

Lemma 3.4. If A is a simplicial object in a semi-abelian category A, then N(A) is a
proper chain complex.

Proof. In one hand, we have to prove that d, o d,+1 = 0 for all n € Z. Since it is
trivial for n < 0, we can suppose n > 0. For n > 2, we can prove it by showing that

ker (0;) jeln—2] ° dy, o dpt1 = 0, which can be done by direct computations:
ker (aj)je[nfm odp odpt1 = O o ker (8j)j€[n71] o dpt1
= Op 0 Opy1 0oker (83')]'6[”]
= Oy, 0 O, o ker (aj)je[n]
=0.

For n = 1, we can use the same reasoning since dj o do = 91 o ker Jy o ds.
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3.1. Simplicial objects and their homology

In another hand, we have to prove that d,, is a proper morphism for all n € Z. If n < 0,

NnAdL>O is a normal epimorphism, so it is proper. Now, if n > 0, we know that
Op 0 0p—1 = lg,, so O, is a split epimorphism and thus a regular epimorphism. Since
di1 = 01 oker 0y and ker (8j)j€[n72] od, = d,oker (8]»)].6[”71] for n > 1, by lemma 2.39, it is
enough to prove that 9, o ker (8j)j €ln—1] is proper. But this is straight forward by lemma
2.41.

O

Notice that if we have a semi-simplicial map A#B, it induces a morphism
N(f) € PCh(N(A),N(B)). Indeed, let (N(f))o = fo and for n > 0, let (N(f)), be
the map making

(05) icin_

Na(A) — A, — 2 An
(N(f))ni lfn ifnl
Nn<B> Bn / B’ITIL—

(8.7‘)j€[n71] !

commute, where f,,_; is the unique map satisfying 7/o f,_1 = fo—10m; foralli € [n—1]. It
is a well-defined map in PCh A because (N (f))nodni1 = d;, 1 0 (N(f))ns1 since these two
maps are equal if we compose them with ker ((9;) . In particular, this construction
turns N into a functor S.A — PCh A.

Moreover, due to the previous lemma, we can define the homology sequence of N(A).

j€n—1]

Definition 3.5. If A is a simplicial object in a semi-abelian category, we write H,A for

H,N(A). Moreover, if A . B is a semi-simplicial map, we shall write H,, f for H, N(f)
if there is not any risk of confusion.

The following proposition gives us a better understanding of HpA.

Proposition 3.6. Let A be a simplicial object in a semi-abelian category A. Then, HpA

o
is the coequalizer of A} —= Ay .
o1

Proof. We have to compute the homology at Ag of the sequence,

01 ker Op

Ker 80 Ao 0
which is, by the dual definition of homology (lemma 2.43), nothing but Coker (0 ker dp) .
Let ¢ be the coequalizer of Jy and 0;. So, we have to prove that ¢ = coker(0; ker dp).

Al —= Ag—>C

1

First, notice that coy kerdy = copkerdy = 0. Now, consider a map Ay L>D such
that f01kerdyp = 0. By definition of ¢, we only have to show that fdy = f0;. Let’s
recall from the definition of simplicial object that dyo¢ = 0100 = 14,. Hence 9y is a split
epimorphism, so it is a normal epimorphism since regular ones are normal (proposition
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3. Simplicial Objects

2.29). Therefore 0y = coker(ker dp).

ker 9o

Ker (90 e Al
I
0 A, N

X

Since foh ker 9y = 0, there is a map m such that mdy = f0;. Consequently, m = mdyoy =
foiog = f and fOy = fO1, which concludes the proof.

D

O]

We can even have a complete description of H,A if we consider a right-contractible
augmented simplicial object. In order to do so, let us prove a lemma, quite trivial, but
which will also be useful in section 3.2.

Lemma 3.7. Let A be a simplicial object in a semi-abelian category A. Then, for all

n €N,
ker (aj)je[n_” o kerd,, = ker (aj)jew.
Proof. First, recall that, if n > 2, then ker (8]‘)].6[”72] od, = 0, oker (8j)j€[n71], hence, for
all n € N,
ker d,, = ker <8n o ker (6j)j€[n71}) i (3.4)
So, (aj)je[n} oker (aj)je[n_” okerd, = 0. Now, suppose we have a map f € A(B, A,) such

that (8j)j€[n} o f = 0.

f
B
ker (95) . cr,,_q0ker dp
Kerd, el A,
i(aj)]e[n]
0 A

We know that f can be written as ker (0;) -1 © f’ for a f' € A(B,N,A) because
(aj)je[n_l] o f = 0. But since 0y, o ker (8j)j€[n_1] o f' =0 and (3.4), f’ factors through
ker d,,. Therefore f factors uniquely through ker (8j)j 1] © ker d,,, which concludes the
proof.

je

O

Proposition 3.8. Let A be a right-contractible augmented simplicial object in a semi-
abelian category A. Then,
Ay ifn=0
HnA _ { 1 1IIn

0 ifn #0.
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3.2. Induced simplicial object and related results

Proof. There is nothing to prove if n < 0. If n = 0, we know that

is a split coequalizer diagram. So, by proposition 3.6, HgA = A_;.
Now, if n > 0, we have to prove that the sequence N(A) is exact at N, A, i.e. imdy,41 =

On hn— _
kerd,. Let A"t s A"l apnd At 220 A7l be the maps such that 7/, = 9,

and 7Tihn71 = hn,1ﬂ'§ for all ¢ € [n] Recall that 8n81 = aian+1 and 8lhn = hn,lai for
all i € [n]. Therefore, in the following diagram, the two upward and the two downward
squares cominute,

ker (8j)j6[n] (8j)j€[n]

Npnt1 n+1 Antl
el
Kerd A Antl

"ok @)jep 0 @)e

where x,, and y, and the induced morphisms. Thus, £,¥, = 1Kerq, since
ker (05) jcjn) © Tn¥n = Ong1 0 ker (95) ;¢ © Un

= Ont1hn o ker (05)

= ker (0))

Jjeln
j€ml’
So x,, is a regular epimorphism. But, by lemma 3.7 and definition of d,, 41,

ker (0;) okerd, oz, = ker (0;)

o Tn

j€n—1] J€[n]

= Op+1 Oker (83)]6[71}

= ker (Oj)je[n_l] (e} dn+1-

Therefore d,,+1 = kerd,, o x,, which is its image factorisation. So imd,; = ker d,.

3.2 Induced simplicial object and related results

It is often useful to know when two semi-simplicial maps have the same image under H,.
Our aim in this section is to prove a result which gives a sufficient condition for that. The
key point in proving it is to construct a new simplicial object from a given one. To do so,
we need to assume that the category has finite limits. In particular, it will work in our
context of semi-abelian categories. But, first, let’s prove some lemmas used in this proof.

Lemma 3.9. Let A be a semi-abelian category, n € Ng and f; € A(B,C) for i € [n + 1].

€T
Suppose we also have three morphisms A== B such that f;xz = f;y for all i € [n]
z

and fp+1y = fnt12. Then, there exists a regular epimorphism Z 2. A and a map

z-2-B satisfying f;g = fizp for all i € [n] and fh419 = fnr12p.
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3. Simplicial Objects

Proof. Let’s consider the following diagram where all squares are pullbacks.

R r2 Q q2 B
_ _
J{ fn+1
p P2 B frt1
_
(fl 'LE
B X n—l—l

(fz)ze[n

Thus, by assumption, there exist morphisms €’ and ¢’ making

A A
\ Y TT~_?
e e
p2 q2
. P g B and ) Q T> B
pli l(fi)ie[n] qll lfn+1
B——>Cntl S

(fi)icn) B fnt1 ¢

commute. Moreover, we have a morphism e for which

(p171,g272)

= A—=R B%.
Now, let us consider one more pullback.

7

"U<ibu

Q

q1

B

(z,2) BQ

commutes. Hence, A

s—2.p_2.B
_ _
NESEE
q2
. B— > ntl
%\L J/fnﬂ
B——C

. ’- . . . . pl
(i12) po be the image factorisation of (q1s1,p2s2). Since P—= B and
— P2

Let S—2>T

n . . . op tp
—= B are (effective) equivalence relations, we can find P——P, B——P,
a2

7Q tQ
Q —=Q and B——=Q suchthat piop = p2, poop = p1, pitp = p2tp = 1p, q10q = q2,
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3.2. Induced simplicial object and related results

q209 = q1 and qitg = q2tg = 1p. In particular, we can find a morphism tg such that

B
Xi tp
S_2_p
tQ N
J7
Q q2 B
ts 4 (41,32) (1B,1B) 9 i . .
commutes. Thus B S I B2 = B—2'B? and I —= B is a reflexive

12
relation. But since A is semi-abelian, it is Mal’cev (proposition 2.25) and so this relation

is an equivalence. So, let I —Z= I be a map such that i;0 = i» and isc = i;. In addition,
we know that there is a morphism k making the following diagram commute,

R

S92 P

S —=
oQT2 .
]
Q——B
q2

since pyopry = par1 = @172 = q2o@Qra. Thus

(i1,i2)op'ke = (ia,i1)p ke
= (p2s2, q151)ke
= (p20pr1, Q1UQ7"2)
= (p171, @212)e

= (

, z).

Finally, let us consider a last pullback

li\

(i1,i2)

]

(q181,p282)

where p is a regular epimorphism since p’ is. Let g = ¢g2s1¢’. If i € [n], then
fig = figzs1g’

= fip1s2g'

= fip2s2g’

= fizp
whereas

fns19 = faries19’

= far11519’
= fny12D-
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3. Simplicial Objects

Therefore, p and ¢ satisfy the desired properties.
O

For the next lemma, we need to introduce the notion of X-horns. We define here some
other related concepts which will be used in the next section.

Definition 3.10. Let A be a simplicial object in a category A. If n € N, k € [n] and
X €ob A, a (n,k)-X-horn is the data of n maps X ——> A,_1 , i € [n]\ {k}, such that
Oix; = O0j_1x; forall 0 <i < j<mandi,j#k.

A filler for this (n,k)-X-horn is a map X —~= A, such that 0;xz = x; for all

We say that A is X-Kan if each X-horn has a filler.

Lemma 3.11. Let A be a simplicial object in a semi-abelian category A. If X B A

is a (n, k)-X-horn, then there is a regular epimorphism Z ~—P. X anda map Z 7. A,
satisfying 0,9 = x;p for all i € [n]\ {k}.

Proof. First of all, consider the case where n = 1. Here, we only have to consider the
pullback,

7. x

o7 e

Al T AO
01—k
where p and ¢ trivially satisfy the required conditions since pullbacks preserve regular
epimorphisms and 0; are split epimorphisms.
Now, we can assume that n > 2. If k£ < n, let’s prove by downward induction on

r € {k+ 1,...,n}, that there exists a regular epimorphism Z, X and a map

Zy LI A, such that 0;g, = z;p, for all r <17 < n.
For r = n, set p, = 1x and g, = op_1x,. They satisfy the only desired condition since
Onop—1 =14, .
Suppose that p,41 and g,41 are constructed for n > r > k + 1 and let’s construct p,
Opr—1TrPr+1

and g,. We want to use our lemma 3.9 with the morphisms 2,1 —or_10rg-511—= A, .
gr+1

Ifi e {r+1,...,n}, we can compute, using the simplicial identities and the definition of

a X-horn,

0i0r 1TrPry1 = 0r—10; 1T Pr41
= 0r—10r TiPry1
= 0r-10;0igr 11
= 07-10;-10rgr41

= aio'rflargr+l

whereas,
Oror—1 argr—H = 67"97‘—4—1 .

/

So, by lemma 3.9, we have a regular epimorphism Z, . Zry+1 and amap Z, LI A,
such that 9,9, = 9;gr11p’ for all i € {r +1,...,n} and 9,¢, = 0ror_12,pr+1p’. Setting
pr = pry1p’, we deduce 0;g, = z;p, for all i € {r,...,n}, which concludes the induction.
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3.2. Induced simplicial object and related results

If £ = 0, we can set p = p; and g = g1 and the proof is finished. So, now, we can assume
that 0 < k < n. We are going to extend the previous induction: let’s prove by (upward)

induction on r € [k — 1] that there exists a regular epimorphism Z, P X and a map

Zy LAn such that 0;g, = x;p, for all 0 <i < rand k4+1 < ¢ < n. For r =0, we have

to split the proof in two cases (k = n or k < n), because we have not proved anything yet

if Kk =n. So, if k =n, we can set pg = 1x and gg = ogxo which satisfy the only required

00TOPL+1

0000gkt1——= A, .
Jk+1

condition. Now, if k < n, we shall use our lemma 3.9 with Zy

If K4+ 1 < i< n, we can compute,

0;00T0pk+1 = 000i—1T0Pk 41
= 0000 TiPr+1
= 00000;gk+1
= 000i-100Gk+1
= 0;0000Gk+1

whereas,
9000009k +1 = Oogk+1-

So, by lemma 3.9, there is a regular epimorphism Zg . Zr+1 and amap Zg 0, Ay
such that 9;g0 = 9;gr11p” for all k+1 < i < n and dygy = dpopxoprr1p”. Hence, if we set
po = prr1p”, we have that 9;g0 = z;po for all k +1 < i < n and i = 0.

Now, suppose we have constructed p,_1 and g,_1 for 1 < r < k — 1 and let’s prove
OrZrPr—1
0rOrgr—1——> An If
gr—1

the existence of p, and g,. We shall use lemma 3.9 with Z,_;

k+1<1<n,

0iorTrpr—1 = 0r0;1TrPr—1
= 0,0 Tipr—1
= 0:0r0igr—1
= 0,0;-10rgr1
= 0;0,0rgr—1.

Similarly, if 0 < i < r—1,

0iorTrpr—1 = 0r—10;1rpr—1
= 0r 10, 1ZiPr—1
= 0r—10;-10igr—1
= 0,-10;0rgr 1
= 8@'0'7“67“97"—1
whereas,

a’rgra'rgr—l = 8rgr—1 .

117

Hence, again by lemma 3.9, there exists a regular epimorphism Z, AN Zr—1 and a map

Z.—~ A, such that 0igr = O;gr_1p" forall 0 < i <r—1land k+1 < i <n and
Orgr = Ororxypr—1p". Thus, if we set p,. = p,_1p"”’, we have 0;g, = z;p, for all 0 < i < r
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3. Simplicial Objects

and k£ 4+ 1 < ¢ < n, which concludes the second induction. Finally, we get p and g by
setting p = pr_1 and g = gg_1.
O

As announced earlier, here is the key point in our proof, the construction of A’.

Proposition 3.12. Let A be a finitely complete category and A a simplicial object in \A.
Let us write A} = A; and let, for n € N, AL be the limit of

Ay A . A (3.5)
5 )
A, A, A,
with pry,...,pr, 1 € A(AL, Ayt1), the corresponding projections.

I
Moreover, we can define Al — = Al

n—1

for n € N and ¢ € [n] by

Oopry O2pry

ol = Al Al and o = Al A}
for n =0, and for n > 0, (91-1 will be the map induced by
I Oit1pr; . . .
o — Al Ay, if1<j<i
pr;o; = 0ipr; 4

AL A i > >

ol
Similarly, we can also define AL —— Al , for n € Ny and i € [n] to be the maps
induced by

[op g
prioy = AL "> Ay and pryof = A} = Ay

for n =0, and for n > 0,

Oi4+1PTr,;
)AL s A 1< <+
Lo = Al TiPrj—1 A . . .
n nte ifn+2>243>i+1.

These constructions make A’ be a simplicial object in A.
Finally, we can define simplicial maps €y(A),e1(A) € SA(A,A) and s(A) € SA(A,AT)
by

Eo(A)o = A(I) L AO and Eo(A)n = A{l

dopr
Lt A, forn >0,

On .,
(A= AL Ay and e(A)n = AL TP AL forn >0
and

s(A)g = Ag —2~ AL and prjs(A), =o;—1 for1<j<n+1landn>0.

These maps satisfy eg(A)s(A) = e1(A)s(A) = 1,.
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3.2. Induced simplicial object and related results

Proof. First of all, we have to check that 9/ is well defined for all n € N, i.e. that
8jprj(9il = 8jprj+18i1 for all j € {1,...,n— 1}. We also have to do it for JZ»I with n € Np.

Then, we proof that A’ is a simplicial object, i.e. that the simplicial identities (3.1),
(3.2) and (3.3) are satisfied by 9/ and o7.

Afterwards, we have to check that s(A), is well defined for all n € N and that €p(A),
€1(A) and s(A) are simplicial maps, i.e. that they commute appropriately with the face
and degeneracy operators.

Finally, we have to check that eg(A),s(A), = €1(A),s(A), = 14, for all n € Ny.

To prove all these things, we only have to use the definitions of simplicial object, Al
and the different maps used. This is very long, but there is not any difficulty, that is why
we omitted the details.

O

Now we are going to prove that, in a semi-abelian category, H, N (eg(A)) is actually an
isomorphism. Recall that, by abuse of notation, we denote it by H,eo(A) (see definition
3.5). Our sufficient condition for two semi-simplicial maps to have equal image under
H, N will trivially follow from this.

Proposition 3.13. Let A be a simplicial object in a semi-abelian category A. Consider
the map €y(A) € SA(A!, A) from proposition 3.12. Then, H,eo(A) is an isomorphism for
alln € Z.

Proof. Since for n < 0 there is nothing to prove, we can assume n € Ny. Recall
that Z,eo(A) is the morphism such that kerd, o Z,eq(A) = N,eo(A) o kerdl. Thus
Zneo(A)d;{_i_l = d, 1 Npy1€0(A) since they are equal when we compose them with the
monomorphism ker d,,.

I dy, s I d, I

Npp1A NoA Np_1A
Nnt1eo(A) Ker dl, Nneo(A) Nn—1€0(A)
Zneo(A)
dn+1 dn

Npt1A NoA Np_1A

d{n+1 Y A

Kerd,

Now, consider the following pullback with e the induced morphism.

Ny Af
n+1 N
\
" Py b Npy1A
n+1 _
p2 i id; 11
Ker d!, Kerd,

n€0

We are going to prove that e is a regular epimorphism. Let p = ker(9;) je[n] © P1- So, by
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3. Simplicial Objects

definition of the action of N,41 on arrows, the following diagram commute,

ker((ﬂ) i (BI)A ”
Ny Al 7/ j€[n] A’{L+1 7/ j€(n] AIZH
Nn+1€0(A)l leo(A)nH J{eo(A)n
Npi1A Apy1 Antl

_ _
ker(9;) je(n] (9)jemm) "
R P

where €g(A),, is the unique map such that 7; o €g(A),, = €y(A), o 7! for all i € [n]. Thus,
by definition of p, 9;p = 0 for all i € [n].

By lemma 3.7, we know that if n > 1, ker (8;) o kerd! = ker <8JI) . So, if

Jj€n—1] Jjeln]

n > 1, let gy_1, for k € {1,...,n+ 1}, be the following composite.

p2 ker d{L
Py —Kerd!, —= N, A!

ker(éﬂ), 3
ker@%l el

I _P
Ay ——=Ana

dk—1

By definition of A{L, we know that Orqr_1 = Orq for all 1 < k < n. Moreover, in view of
definition of 97, we can say that, forall 1 < k < n+1andi € [n+1]\{k—1,k}, digx_1 = 0.
If n =0, let go = p2 € A(P, A1) since Kerd) = A} = A;. Let’s prove that 9,11p = doqo.
If n= 0, 81]) = 81 (ker 80)]31 = d1p1 = d/1p1 = Z[)E()(A)pg = NQG()(A)])Q = 80])2. Otherwise,

Ont1p = Opt1 ker(0;) jenp1 = ker(0)) jefn—11dn+1P1
= ker(aj)je[n,l] ker dnd1n+1p1 = ker(f)j)je[n,l] ker annGQ(A)pQ
= ker(9)) jejn—1]Nn€o(A) ker dlpy = eo(A), ker(af)je[n_l] ker d! py
= Oopry ker(9)) jefip2 = Bodo-
Now, we are going to construct, by induction on r € {1,...,n+2}, regular epimorphisms
T hT— . . .
PP | and maps P, *1>An+2 satisfying d;h,—1 = 0 for i ¢ {r — 1,r,n + 2},
an+2hr71 = qayr..-yr if r <n+1, doho = py1 and 0 _1hy 2y, = Op_1hp—q if 7 = 2.
For r =1, we define zg = p, v = ... 2p+1 = 0 and 42 = qo. This is a (n + 2, 1)-Fy-horn
since O;p = 0 for all i € [n], Opt1p = Ovqo and 0;qp = 0 for all 2 < i < n+ 1. So, by
lemma 3.11, there is a regular epimorphism P, n Py and amap P; L Apto such
that doho = py1, O;hog =0 for all 2 < i < n+ 1 and 942k = qova-
Suppose that n > 1 and y, and h,_1 has been constructed for 1 < r < n and
let’s prove the existence of y,4+1 and h,. Let zg = -+ = z,—1 = 0, z, = Oph,_1,
Tpyo == Tpy1 = 0 and 242 = ¢ry1 ... Y. We know that 0;_10,h,—1 = 0,0jh,—1 =0

for au] € {7’—|—2, ) n+1} and arerl s Yr = OrGr—1Y1 .- Yr = 8ran+2hr—1 = 8n+1arhr—1‘
Moreover, if i < r — 1, 0;0:h,_1 = 0,_10;hr_1 = 0, whereas, if i = r — 1:

87‘—187"}7‘7‘—1 = 87"—187‘—1}7/7’—1 = ar—lar—lhr—er = r—larhr—2yr =0 ifr>1

and
0pO1hg = OgOpgho = 80py1 =0 ifr=1.
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3.2. Induced simplicial object and related results

Finally, 9;qry1 ...y, = 0if i & {r,r+1,n+2}. Therefore, the z;’s form a (n+2,r+1)-P,-
horn. So, by lemma 3.11, there exists a regular epimorphism P, gty P, and a map
Priy —w Apyy such that d;hy = 0 for all i ¢ {r,r + 1,n + 2}, dphy = Ophy_1yri1 and
On+2hr = @ry1 - YrYrs1-

It remains to complete the last part of the induction. So, suppose all the y,’s and
hy—1’s are constructed but y,4o and h,41 and let’s prove their existence. We define
9=+ =x, =0 and z,11 = Ons+1hn. We know that 0;0,11h, = 9,0;h, = 0if i < n,
whereas, if i = n,

anan—l—lhn = OnOnhy = 8nanhn—lyn—&-l = 6nan+1hn—1yn+1 =0 ifn>0

and 0yOpho = Oopyr = 0 if n = 0. So the z;’s form a (n + 2,n + 2)-P,4;-horn.

Hence, by lemma 3.11, there exists a regular epimorphism P, o i3 P,+1 and a map

hn . .
Pyyio ot Ap+o such that 0;hy, 1 = 0 for all i € [n] and Op41hnt1 = Ont1hnynt2, which

concludes the induction.
The map b’ = (hoya - - - Ynt2, -+ Mn¥Ynt2, hnt1) € A(Pri2, A{Z_H) is well defined, since

Oihi1yis1 = Oihi if 1 < i < n+ 1. We would like to show (a})l =01 =0,
JE|IN

we have 9Jh' = 9ph1 = 0. For n > 0, it is enough to show that for all i € [n] and
j € {1,...,n + 1}, we have prjailh’ = 0. If j < i prjailh’ = Oipipr;h' =
8i+1hj—1yj+1 oo Yn42 = 0. If i < j <n-+ 1, prjailh/ = aiprj+1h/ = 8,-hjyj+2 e Ynt2 = 0,
whereas, if j = n + 1, pr, 10/8 = 9ipr, o/ = Oihyi1 = 0. Therefore, there is a map
Ppio —"> Ny Al such that ker (a} ) oh=H.

Jjeln]
Now, we would like to show that eh = y1...ypt2. To do so, we have to prove that

preh = p1y1 ... Ynto and paeh = poyi...Ynt+o. For the first equality, we have to show
Npt1€0(A)h = p1yi1 . . . Yyn+2, which is a consequence of

ker(95) jem) Nn+1€0(A)h = €o(A)p41 ker (8f)j€[n] h

= eo(A)p 1l

= dohoy2 - - - Yn+2

=DY1-- -Yn+2

= ker(0) jenP1V1 - - - Ynt2-
For the second one, we have to prove dgﬂh = PoYi ... Ynt2, OF dZLHh = ker dﬁpggl e Ynt2-
If n = 0, we have d{h = 0 ker(@é)h = Oopri W = dahoy2 = qoy1y2 = pay1y2. Otherwise,
dthlh = ker (8{) P2Y1 - - - Ynt2. Let’s prove that

j€[n-1] j€ln]
their projections on A, are equal. So, if k € {1,...n+ 1}, we have

it is enough to prove ker ((’3][ )

pry, ker (9]) dl 1 h = pr0L, ker (0! h

j€[n—1] j)je[n]
= Onaprih/

= Ont2Pk—1Yk+1 - - - Yn+2
= qk—-1Y1---Yn+2

= pry, ker ((9][)

j€ln)] p2Y1 - - - Yn42-

Therefore eh = y1 ...yn12 and because the y;’s are regular epimorphisms, by corollary
2.23, e is a regular epimorphism.
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3. Simplicial Objects
Now, consider the following diagram

ker Nn+1 €0 (A) Nn+1€0 (A)

Ker Nn+1€0(A) Nn+1AI Nn+1A

k1 , e
!
d i dnia

k3 Ker 1 Py Nn+1A

ker p1 N p1
% % d{nJrl

Ker Z,e0(A) Ker d! Kerd,

ker Znep(A) Zneo(A)

where ki, ko and ks are the induced morphisms. Notice that koki = k3 since their
composite with ker Z,eg(A) are equal. We also know that €p(A) is a split epimorphism, so
Nyti1€0(A), Zneo(A) and py are regular epimorphisms. Thus, by a well-known result about
kernel and pullbacks (see lemma 4.2.4 in [4]), ko is an isomorphism. Moreover, again by
lemma 4.2.4 in [4], the up-left-hand square is a pullback. So, ki, and therefore ks, is a
regular epimorphism.

Let’s prove that

N7L+1€0 (A)
Ny AT D1 o® A
d/[

n+1l ldfrrl»l

Ker d! Kerd,

n€o

is a pushout. Suppose we have two arrows N,11A h B and Ker d{L L B such that
len—l—leO(A) = fgd:{Jrl. SO, because f2 ker Zne()(A)kg = len_HEO(A) ker Nn+160(A) = O,
we know that foker Z,e9(A) = 0. But Z,e9(A) is a normal epimorphism, so Z,€ey(A) =
coker(ker Z,,e9(A)). Consequently, there is a unique morphism Kerd, —? > B such that
9Zneo(A) = fo. This map also satisfies gd], | ; = f1 since their composite with Ny 11€9(A)
are equal. Therefore, we have proved that the left-hand square is a pushout.

dl coker d/I
+1 +1
Ny Al - Kerd, ————— H,A!
Np+i€o (A)l \LGeo(A) lHneo(A)
r
Np1A Kerd, - H,A
1 coker dn+1

Therefore, by the dual of lemma 4.2.4 in [4], Hyeo(A) is an isomorphism.
O

Finally, we have our main result of this section as an immediate corollary of the previous
proposition. Recall that, by abuse of notation, the functor H, means here H, N.

Corollary 3.14. Let A and B be two simplicial objects in a semi-abelian category A,

with A S B two semi-simplicial maps. If there is a semi-simplicial map A ol
such that f = ¢y(B)h and g = €1(B)h, then H, f = H,g for all n € Z.
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3.3. Comparison theorem

Proof. By proposition 3.12, we know that the following diagram commutes.

; B
=7
Al g i® g
610&
B

1

Moreover, by proposition 3.13, H,eo(B)' = H,s(B) = H,e;(B)'. Therefore,
H,f = Hpeo(B)H,h = Hpe1(B)H,h = H,g.

g

O]

3.3 Comparison theorem

A natural question that one can wonder about augmented simplicial objects is the follow-

ing: Given two augmented simplicial objects A and B and a map A_; S B_1, can we

extend it to a augmented simplicial map from A to B? Is such an extension unique? The
aim of this section is to give a sufficient condition for the existence of a semi-simplicial
extension. Moreover, we shall prove that if this condition is satisfied, two such extensions
have the same image under H,, using corollary 3.14. To find this condition, we have to
introduce the concept of a projective class.

Definition 3.15. Let C be a category, P € obC and e € C(A, B). We say that P is

e-projective and e is P-epic if for any morphism P*f>B, there exists a map
P—2+ A such that eg = f.

P
3g
lvf
I4

If P is a class of object of C, a morphism e is called P-epic if it is P-epic for all P € P.
The class of morphisms which are P-epic is denoted by P-epi. Similarly, if £ is a class of
morphism of C, a object P is called £-projective if it is e-projective for all e € £. The
class of objects which are £-projective is denoted by £-proj.

We say that C has enough £-projectives if for all Z € ob C, there exists P € £-proj
and a morphism P——= 727 in €.

Let P be a class of object of C and £ be a class of morphisms of C. We say that (P, &) is
a projective class on C if P = E-proj, £ = P-epi and C has enough E-projectives. Notice
that P and £ determine each-other, so, by abuse of notation, we can call this projective
class P or €.

Remark 3.16. For a class P C ob C and a class &€ C mor(C, we always have
P C (P-epi)-proj and € C (E-proj)-epi. Moreover, the pair ((P-epi)-proj, P-epi) (re-
spectively (E-proj, (E-proj)-epi)) is a projective class provided the fact that C has enough
P-epi-projectives (respectively (E-proj)-epi-projectives). In that case, we call it the pro-
jective class generated by P (respectively &).

Some definitions we have made for simplicial objects can be adapted to be relative to a
projective class P.
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Definition 3.17. Let P be a projective class on a category C and A be an augmented
simplicial object in C. We say that A is P-left-contractible if for each P € P, there exist

mappings of classes C(P, 4,,) ny C(P,Ay+1) foreachn > —1 such that dyoh,(f) = f for
all f € C(P,Ay) and 0;0hy(f) = hp—1(0i—10f) forall f € C(P,A,) andi € {1,...,n+1}.

Remark 3.18. Of course, we can notice similarities with the definition of left-contractible

augmented simplicial objects (see definition 3.2). Actually, if C is locally small, A is P-

left-contractible if, for each P € P, the simplicial object C(P, A) in Set is left-contractible.

The face and degeneracy operators of this simplicial object are defined obviously, i.e.
85:81-0—

C(P,A,) — C(P,A,—1) and C(P,A,) C(P,Apy1) -

—
0,=0;0—

Definition 3.19. Let P be a projective class on a category C and A be a simplicial object
in C. We say that A is P-Kan if it is P-Kan for all P € P.

The class P is a Kan projective class on C if every P-left-contractible augmented
simplicial object is P-Kan.

Before proving the main theorem of this section, we are going to show a lemma which
will be used several times in the proof of this theorem.

Lemma 3.20. Let P be a projective class on a category C and A a P-Kan P-left-
contractible augmented simplicial object in C. Given P € P, n € Ny and n + 1 maps

P2 A, , i € [n], such that 0;x; = 0j_1; for all 0 < ¢ < j < n, then there exists a

morphism P —%= A,, such that d;z = z; for all i € [n].

Proof. Let C(P, An) %C(P, A1), m = —1, be the mappings given by definition of

i=hn—1(z;—
P-left-contractible for P. Define also, for i € {1,...,n+1}, P Y seint)

assumptions, we have (if n > 0), forall 1 <i<j<n+1,

A, . By

0iyj = Oihn—1(xj-1)
= hp_2(0i—17_1)
= hp_2(0j_2i-1)
= 0j_1hp—1(z;-1)

= Uj-1Y;.

Thus, the y;’s form a (n+1,0)-P-horn, even if n = 0 since there is nothing to check in that
case. But A is P-Kan, so we have a filler P —y>An+1 for this horn. So, by definition
of a filler, if we set x = Jpy, we have
8Z»m = aiaoy
= 000i+1Y
= dYi+1
= Oohn-1(z:)

:xi

for all i € [n].
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Notice that if we have an (augmented) simplicial object A in a category C and a functor
E :C — A, then E(A) is an (augmented) simplicial object in A by setting E(A),, = E(Ay),
d. = F(9;) and o} = E(0;). This turns E into functors E : SC — SA, S'C — S' A,
ASC — ASAor AS'C — AS' A.

Now, we are able to prove a theorem to extend morphisms P_; —— A_1 to augmented

semi-simplicial maps P——= A . Note that we do not need the fact that P_; € P.

Theorem 3.21 (Comparison Theorem). Let P be a projective class on a category C. Let
also A and P be two augmented simplicial objects in C such that P, € P for all n € Ny
and A is P-Kan and P-left-contractible. Then, each morphism P_q gA_l can be
extended to a augmented semi-simplicial map P*f>A . Moreover, if £ : C - Ais a
functor to a semi-abelian category A and g another extension, then H,Ef = H,FEg for
alln € Z.

Proof. For the first part of the proof, we are going to construct the f,,’s by induction. Since
f—1 is already defined, let us suppose that all the fi’s are constructed for —1 < k <n—1,
n € Ny, and that they commute appropriately with the face operators. Now, we are going
to construct f,. Set z; = f,_10; for i € [n]. We want to use lemma 3.20. If n = 0, there
is nothing to check. If n > 0, we can compute, for 0 < i < j < n,

Oixj = 0ifn-10;

= fn—20;0;
= fn—20;-10;
= 0j-1fn-10;
= j—ll'z'-
So, lemma 3.20 gives us the expected f,.
—_—
P, z P, 1 s P, o .. Py—— P4
fn lfn—l lfn—Q ifo if—l
v .
n Z A1 A, o . Ag—=A_

For the second part of the proof, by lemma 3.14, we have to construct a semi-simplicial
map E(P) *h>E(A)I such that eg(E(A))h = E(f) and € (E(A))h = E(g). To do so,

n

let’s construct, by induction on n, morphisms P, ——> Apy1 for n € Ny and i € [n] such
that dohf = fn, Ont+1h) = gn and

Wi 10 <i <<

Oihi =< o0;h if0<i=j<

RO, if0<j+1

hO

If n = 0, we know that dygo = f_100 = 9o fo. Thus, lemma 3.20 gives us Py —— A;
such that dphd = fo and Oy h8 = go.

Now, suppose all the h]’s have been constructed for 0 < 7 < n —1, n > 1 and that

they commute as expected with the J;’s. We are going to construct the hl'’s. To do it, we

construct h]' by induction on i € [n] in such a way that it satisfies all the desired equalities
where, of course, only already defined maps appear.
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3. Simplicial Objects

For ¢ =0, let zg = f, and z; = h()‘*l@i,l for 1 < ¢ < n+ 1. Let’s check that this is
a (n+1,1)-Py-horn. 1 < j < n+1, hi '0;-1 = fu10j-1 = 0j_1fn. Whereas, if
l<i<g<<n+1, aihg’laj,l = h8726i718j71 = hgfzaj,gai,l = aj,lhgflai,l. Thus,

n

since A is P,-Kan, we have a filler P, L Ap41 for this horn. This satisfies dohy = fn
and O;hy = hg_lﬁi_l for 2 < i < n+ 1. These are all the equalities involving hj which
are already defined.

Now, suppose that n > 2 and that the h}'’s have been defined for 0 < ¢ < — 1 where
1 <1< n—1and let us construct hj' (we shall construct h;! for n > 1 afterwards). Set
Yi = h?_—fai for 0 <i <,y =0, and y; = h?_lai_l for [ +1 < i< n+1. Let check
that defines a (n + 1,1 + 1)-P,-horn.

Ifogi< g <l 8ih?__118j = h?_‘f&iaj = h?_‘faj_l@i = 8j_1h?__1182-.

fO<i<l—1<j=1: 0;0h} | =0_10:h} | = 011} 0; = O_1h)" ' 0.

Ifi=1—-1,j=0land > 1:

O—101h)' 1 = O—101—1 R}
= 011011 5
= 01_10/h]",
= O1—1h]" 591
= Oj_1h} 01

Ifl=1,i=0and j = 1: gO1h = doohf = o fn = fn—100 = oy *p.
fOo<i<landl+1<j<n+1:

aih?_laj_l = h?_‘faﬁj_l = h?_‘faj_g&- = 8]‘_1}1?__118@'.

Ifi=landl+1<j<n+1: (9[]1?_18]‘_1 = (9[]1?__118]‘_1 = 818jh7_1 = aj_lalh?’_l.
IfTi+l<i< j<n+1: &-h?_laj_l = h}‘_28i_18j_1 = h?_Qaj_g&-_l = 8j_1h?_18i_1.

n

Therefore, since A is P,,-Kan, we have a filler P, s Ay for this P,-horn. It satisfies
OhY = h0; for 0 < i < I, Qh? = Gjht | and kY = 10—y for [+ 1 < i < n+ 1.
These are the only equalities involving h;* which are already defined.

To concludes the induction, it remains to construct h;:. Let z; = h;;jai for i € [n — 1],

Zn = Oph)'_; and 2,41 = g,. We want to use lemma 3.20. So, let us check the hypothesis:
fo<i<j<n: 8,~h2j8j = hZ:%@iaj = hz:%aj_lai = 8j_1h"j8,~.

mn

fo<i<n—-1<j=n: 8ianhg_1 = 8n718ihg_1 = 8n71h2:5al = an,lh;‘jaz
Ifi=n—-1,j=nandn>1:

anflanhz_l = 8n718n71hz_1
= n—lan—lhz_z
= n—lanhzfz
= n—th:%an—l
= nfth:%anfl-
Iftn= 1, 7 =0 and j =1: 6061h(1) = 80f1 = foa() = 60h860.
fo<i<n<j=n+1: 0;gn = gn_10; = Onhﬁja
Ifi=nand j = n+ 1 0ngn = gn10n = b [0p = OnOns1h?_; = 0nOnhl_,.

hn
Therefore, by lemma 3.20, there exists a map P, ——= A,,+1 such that 9;h]' = h;;jai
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3.3. Comparison theorem

for 0 <7 < n, Oph], = Oph)r_, and Op41h] = gn which are the desired equalities. So the
induction is completed.

Now we are going to construct E(P) b E(A) . Let hg = E(hY) € C(E(Py), E(A)(I))

Ny (A)! is the morphism defined by pr;h,, = E(h ;) for each

and for n > 1, E(P,) "

i € {l,...,n+ 1}. Note that this morphism is well-defined since for all i € {1,...,n},
E(0;)E(h}_,) = E(0;)E(h}'). Let’s check that h is a semi-simplicial map: first, notice that
8éh1 = E(ao)E(h%) = E(hg)E(ao) = hoE(@o) and 81[h1 = E(ag)E(h(l)) = E(hg)E(al) =
hoE(01). Then, we have to prove that 8{hn+1 = hp,E(0;) forn > 1 and i € [n+ 1]. To do
so, it is enough to remark that

pr;0f py1 = E(0i11)prjhna = E0i1) E(W)1)) = E(h}_)E(0;) = pr;h, B(9;)

for all 1 < § <7 and that

prjailhn-&-l = E(0)prjs1hni1 = E(Q)E(R]) = E(h]_1)E(9;) = prjh, B(9))
for all i < j < m+ 1. It remains to show that eg(E(A))h = E(f) and € (E(A))h = ( ).
But it follows from definition: eg(E(A))nhy, = E(0o)E(hi) = E(fn) and €1(E(A))phy =
E(Op+1)E(hyy) = E(gp) for all n € Ny.
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4 Comonadic Homology

In chapter 3, we studied simplicial objects. In this chapter, we are going to consider
particular simplicial objects, the ones arising from a comonad. If we ‘push’ such simplicial
objects forwards into a semi-abelian category with a functor, they induce a homology
called comonadic homology. This is a functor from the initial category D to the semi-
abelian one, A. It can also be viewed as a functor from [D,A] to [D,A]. However, in
section 4.2, we shall focus on a necessary condition for two comonads to induce the same
homology. Fortunately, all the hard part of the work has been accomplished in chapter 3,
with the Comparison Theorem. The last section gives some examples of such homologies.

4.1 Comonads

Comonads are the duals of monads. They can be viewed as the information we get from
an adjunction F' 4 H where F': C — D and H : D — C without mentioning what happens
on C. In this section, we are constructing a simplicial object from a comonad.

Definition 4.1. A comonad G = (G, ¢, d) in a category D consists of a functor G : D — D
and two natural transformations ¢ : G — 1p and § : G — G? making the diagrams

G—2s G2 (4.1)

e

G

G- 2 (4.2)

G

G—2s G2 (4.3)

[ e

2 3
G—>G§G

commute. We call £ the counit, while § is the comultiplication. Diagrams (4.1) and
(4.2) are called the counit laws, whereas (4.3) is the coassociativity law.

Example 4.2. Let FF 4 H be an adjunction where F' : C - D and H : D — C. Let
n:1lc — HF and ¢ : FH — 1p be respectively the unit and counit of the adjunction. If
weset G = FH and § = Fng : G — G2, then G = (G, ¢, ) is a comonad of D. Indeed, the
counit laws follows from triangular identities and the coassociativity law from naturality
of n.

The following lemma encompasses all the simplicial identities we have to prove in order
to construct a simplicial object.
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4. Comonadic Homology

Lemma 4.3. If we have a comonad G in D and an object A € ob D, for all n € Ny, we
have the following identities:
Glegn-ig 0 Pegnir-ig = I legnojrig 0 Glegn-iviy VO
GUOcni1-ig 0 GI0gn-j 4 = G 0gn—j4 0 GOgn-ig V0 <
Glegnii—ig 0 GIogn—ig = GI Y0qn-is 0 Glegn-iy V0<
Glegni1-ig 0 GIogn-jq = lgniiy VO<i=j<mnandVl1

//\//\A//\//\
oL .
o e R e
N R

—~ o~ o~ o~ o~

Gié‘GrH»lfiA o GjéanjA e Gj5anj71A oGt egn—itiy V1<j+1<i
Proof. Let’s prove the first identity:
GZEGn—iA (¢] G]€Gn+1—jA = Gz (EGn—iA (¢] GJ_ZEGH+1—jA)
= GZ(ijlflé‘Gn—jﬂA O Eqn—itiy)
= Gj71€anj+1A o GianfileA

where we used the naturality of .
For the second one, we also do a direct computation:

Gi(;Gn«l»lfiA (¢] Gj(;anjA = Gi((SGruklfiA (e] Gjil(SanjA)
= GG 8 gnj 4 0 Ogn—i 4)

where we used the naturality of § if i < j or the coassociativity law (4.3) if i = j.
For the third identity, we use again the naturality of e:

Glegnii-ig © Glogn—s4 = G'(egnii-ia © G’ "6gn-s4)
= GUGT g4 08Gn-ia)
=G 5gn—i4 0 Glegn—iy.
To prove (4.7) when i = j we use the second counit law (4.2)
Glegnii-ig © Gogn-ig = G (egnir-ig 0 0gn-ig) = G (lgn-i+14) = Lanti 4,
while we use the first counit law (4.1) if i = j +1
G legnsja 0 G'ogn-ja = G/ (Gegn-ia 0 0gn-ia) = G (Lgn-it14) = lgniia.
Finally, we prove the last identity using the naturality of ¢:
Glegniimig 0 GPogn—ja = G (G Tegnirmig 0 6gn—i 4)
= G (Ogn-s-140 G egnit14)

= Gj(SG'nfjflA o Giilean'L{»lA-

Due to this lemma, G induces an augmented simplicial object in D.
Definition 4.4. Let G be a comonad in D and A € ob D. If we write, for all n € Ny and
Gi n—i Gid n—u
i € [n], 8 for the map G"1A— 9" GnA g for GPTIA— S Gra24 and
Ay, = G A for all n > —1, then (A,),>_1 is an augmented simplicial object in D. We

denote it by GA.
= GPAT—=GPA—=GA— A
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4.2. Comonadic homology

Moreover, if f € D(A, B), we have an induced morphism G(f) € ASD(GA,GB) by
setting (G(f))n = G"Lf for all n > —1. This is a well-defined morphism in the category
ASD since (G(f))p—100; = 0,0 (G(f))n and (G(f))n 0 i = 0} 0 (G(f))n—1 by naturality
of € and 4. This makes G into a functor G : D — ASD.

If D is semi-abelian, we can define the homology sequence of the Moore complex of GA.
This is what we are going to do in the next section.

4.2 Comonadic homology

Recall that if we have a functor E : D — A, it can be turned into a functor £ : SD — S A
in the obvious way. This is how GA can induce a simplicial object (and so a homology)
in a semi-abelian category. The main result of this section, and of this essay, says that,
provided some condition on two comonads G and K holds, GA and KA induce the same
homology.

Definition 4.5. Let A, D be two categories with A semi-abelian. Let also G = (G, ¢, )
be a comonad in D, A be an object in D and E : D — A be a functor. For all n € Z,

Hy(A,E)g = H,_1NEGA (4.9)

is called the n** homology object of A (with coefficients in FE) relative to the
comonad G. This induces a functor H,(—, E)g : D — A. Moreover, if E,E' : D — A
are two functors and a : £ — E’ is a natural transformation, we can define another natural
transformation H,(—, a)g := 8 : Hy(—, E)g — Hp(—, E')g by setting 84 as the image by
H,,_1 N of the augmented simplicial map

W —=FEG3A—=FEG?A—=FEGA——EA
—_— S —_—
iaciﬂx J{O‘GQA J/GGA iOéA
= FGA—=ZFEG’A—zEGA—-FE'A
—_—
This makes Hy,(—, )¢ be a functor [D, A] — [D, AJ.
Actually, we can already compute this homology for some particular objects of D.

Proposition 4.6. Let A, D be two categories with A semi-abelian, G a comonad in D,
E :D — A a functor and A € ob D. Then,

FGA ifn=1

Ho(GA, E)g =
( Jo {o ifn£1.

Proof. A = EGG A is an augmented simplicial object in A. It is actually right-contractible.

— n—+1
Indeed, we can define A4, = EG"t2A I =BG 04 EG"3A= A, foralln>—1
which satisfies

Ony1hn = EG”+18GA o EG”+1(5A =lpgnt24 =14,
for all n > —1 by the counit law (4.2) and
aihn == EGi6Gn+27iA o EGn+15A == EGnéA o EGigG’rH»lfiA = hn,lai

for all n > 0 and ¢ € [n] by naturality of €. The result follows from proposition 3.8. Recall
the dimension shift, i.e. H,(GA, E)¢ = H,—1NEGGA.
O
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4. Comonadic Homology

A natural question that one can wonder about comonadic homology, is to know if two
different comonads can give rise to the same homology. We are going to give a sufficient
condition on these comonads to have the same homology. To do so, we need to introduce
the projective class generated by a comonad (see definition 3.15 and remark 3.16).

Definition 4.7. Let G be a comonad in the category D. The projective class gener-
ated by G is the projective class generated by the class {GA | A € ob D}. We denote it
by (Pg,&c).

Remark 4.8. To see that this is really a projective class, we have to check that D has
enough &g projectives. Let A € ob D. We know that GA € Pg. Moreover, GA AL A s

Gfod
foon GA—2- 4 , by naturality

in &g since, if we have GB I A, it equals GB
of € and (4.2). Therefore D has enough £g projectives.

There is a better description of Pg.
Lemma 4.9. Let G be a comonad in D. Then,
Pg ={P € ob D|3s € D(P,GP) such that eps = 1p}.

Proof. Let P € Pg. Since, GP—L~P is in &g, 1p factors through it which gives
s € D(P,GP).

Conversely, suppose P € ob D and P —2> GP are such that eps = 1p. Then, if

A—5> B is in &g, we have to prove that P is e-projective. That is, given P I B,
we have to show that f factors through e. But since e is in &g, there exists h € D(GP, A)
such that eh = fep. Thus, ehs = feps = f and f factors through e.

O

Now we have everything we need to prove the main theorem of this essay.

Theorem 4.10. Let G and K be two comonads on a category D such that Pg = Pk and
this is a Kan projective class on D. If A is a semi-abelian category and F : D — A a
functor, then H,(—, E)g and H,(—, E)x are naturally isomorphic for all n € Z.

Proof. Set P = Pg = Pk and fix A € ob D. First, let’s prove that GA is Pg-left-
contractible. Let P € Pg and s € D(P,GP) given by lemma 4.9. For all n > —1,
define the mapping h, : C(P,G""'A) ——=C(P,G"*2A) : f — Gf os. It satisfies the
required condition since dgG fs = ean+14Gfs = feps = f and 0;Gfs = Glegni1-i 4G f s =
G(G"Yeanii-igf)s = G(9i_1f)s for all i € {1,...,n + 1}. Therefore GA is P-left-
contractible and also P-Kan since P is a Kan projective class by assumption. Similarly,
KA is P-Kan and P-left-contractible.

But, by definition of P, GB, KB € P for all B € ob D, so we can use the Com-

A
parison Theorem 3.21 to get two augmented semi-simplicial maps GALHKA and

A
KA~ GA such that f4, = g4, = 14.

GM2A - EGMTIATEGRA GA—> A
f;z‘ﬂi if;{‘ lf:;‘l l 3 llA
K™2A  ZK"™A- £ K"A KA——=A
97’?+1i o igr‘? lgi‘_l igg‘ \LlA
GM2A T EGMHIATEGA GA——= A
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4.3. Examples

Moreover, by the second part of the Comparison Theorem 3.21, we know that
H,NE(g*f*) = H\NE(lga) = lg,NEGA

and
H,NE(f*g") = H,NE(1ga) = lg, nExa-
Therefore
HTL—H(A) E)G = Hn—l—l(A? E)]K
It remains to show that this isomorphism is natural in A. If we have A" B in

A
D, we can consider the two augmented semi-simplicial maps GA A KA 2"~ KB and

B
GA-%" GB L~ KB . They satisfy (KhofA)_; = h = (fBoGh)_;. Thus, by the Com-
parison Theorem 3.21, H,NE(Kh o f4) = H,NE(f? o Gh), which proves the naturality
of the isomorphism H, NE(f4).

H,NEGh

Hy,11(A E)g Hp,1(B, E)g
H.NE(f4) H,NE(fB)
Hn1(A, E)x — g Hnv1 (B, E)x

4.3 Examples

The aim of this section is to exhibit some examples of comonadic homologies. Some of
them are well-known homology theories. Of course, the following list is not exhaustive.
For ‘brevity’ of this essay, the results of this section are left unproved. Let’s start with
the trivial example.

Example 4.11 (Trivial). If G = (1p, 1,1), by proposition 4.6 or by direct computations,
we have

FA ifn=1

H,(A E)g =
(4, E)g {o ifn 1.
The next one is a well-know homology in Commutative Algebra.

Example 4.12 (Tor). Let R be a unitary commutative ring, D = R-Mod and G be the
comonad induced by the forgetful/free adjunction (where C = Set). If A = R-Mod and
FE : R-Mod — R-Mod is the functor given by — ®r N for a fixed R-module N, then, one
can prove (see [5]) that

H,(M,— ®g N)g = Tor® (M, N).
Due to proposition 4.6, we have another proof of

RM @n N ifn=0

Torf(RPM N) =
0 if n > 0.
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4. Comonadic Homology

Now, we give an example from Algebraic Topology.

Example 4.13 (Singular Homology). Let’s construct a comonad in the category D = Top.
We denote by A, the p-dimensional simplex. Let G' be the functor

G :Top — Top: X — |_| JANS
Ap—X
p=0

where the disjoint union is over all continuous map A, — X. The action of G on arrows
is given by the following: if g : X — Y is a continuous function, then
Gg:ze(Ap)p—xe(Apys
The counit is the natural transformation
ex:GX = X:x e (Ay)fr— flx)
while the comultiplication is given by
0x :GX = G*°X 1z e (Ap)f — x € (Ap)(a,),—ax-

It is easy to check that G = (G, ¢, 6) is a comonad.

Now, if A = AbGp and E = Hy"® : Top — AbGp is the 0" singular homology functor,
Barr and Beck proved in [5] that H, (X, Hj"®)g is the n — 1" singular homology group of
X.

The last example says that in preadditive categories, we do not have to prove that the
projective class is Kan to use theorem 4.10.

Example 4.14. Moore showed in [11] that if D is a preadditive category, then, every
simplicial object is X-Kan for all X € ob D. Thus every projective class is Kan and we
can rewrite theorem 4.10 as:

Let G and K be two comonads on a preadditive category D such that Pg = Px. If A
is a semi-abelian category and E : D — A a functor, then H,(—, F)g and H,(—, F)x are
naturally isomorphic for all n € Z.
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5 Conclusion

Homology was first studied to count the number of holes in a topological space. Now,
it has many other applications in Mathematics. A natural way to generalise it is to use
Category Theory. Classically, homology is studied in abelian categories such as AbGp or
R-Mod. We exhibited in this essay another context where it can be done: semi-abelian
categories. As we have seen, the definition of semi-abelian category is less restrictive
than the one of abelian category in order to encompass examples such as Gp and LieAlg.
However, there are sufficiently many axioms to have an image factorisation, to prove their
finite completeness and cocompleteness and to let the Five, Nine and Snake lemmas hold.

In this essay, we focused on a particular kind of homology: the one arising from a
simplicial object and especially a simplicial object made from a comonad. This is called
the comonadic homology. The main result of this essay gives a condition on two comonads
to induce the same homology. But there is much more to say about comonadic homology.
Indeed, we could have focused this essay on the functorial dependence of H,(—, F)g in E
and its properties of G-acyclicity and G-connectedness. We could also have compared it
to the case where A is abelian. With this additional hypothesis, Barr and Beck proved in
[5] that we no longer need the Kan condition in theorem 4.10.

Comonadic homology is not the only way to define a homology in semi-abelian cate-
gories. Indeed, we can extend the well-known Hopf formula to higher dimensions to define
a homology theory in semi-abelian categories. We can prove (see [1]) that they coincide
whenever they are both defined, which gives two different ways to study the same object.
Two other definitions of homology are possible in the semi-abelian context. One uses
Galois groupoids while the other one is constructed from a satellite. For more details, we
refer to [1].
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