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1 Introduction

This essay is about comonadic homology in semi-abelian categories.
Homological algebra appears in every area of Algebra: Group Theory, Commutative Al-

gebra, Algebraic Geometry, Algebraic Topology, and so forth. It can be used to measure
the exactness of a chain complex. In Category Theory, we defined homology in abelian cat-
egories, like the category AbGp of abelian groups or R-Mod of R-modules. Unfortunately,
the category of groups and the one of Lie algebras are not abelian.

In order to encompass those examples, semi-abelian categories are defined. Of course
abelian categories are semi-abelian, but Gp and LieAlg are semi-abelian as well. Semi-
abelian categories are defined as regular (to have an image factorisation) and pointed (to
be able to define kernels and cokernels). Moreover, in order to define homology in those
categories, they are required to be Barr exact, to have binary coproducts and that the
regular Short Five Lemma holds. We can prove (see chapter 2) that they are Mal’cev,
finitely cocomplete and that every regular epimorphism is normal. In semi-abelian cate-
gories, homology is defined in a similar way to abelian ones, but we need to assume that
the chain complex is proper (see section 2.7).

A fruitful way to construct a proper chain complex is to introduce simplicial objects.
In chapter 3, we define a simplicial object in any category as a diagram of the form

· · ·
//
//
//
//
A2

//
//
//oo

oo
oo

A1
//
//

oo
oo A0

oo

which satisfies some equalities called simplicial identities. If we work in a semi-abelian
category, such objects induce a proper chain complex, and so a homology. This homology
is studied in chapter 3.

A particular kind of simplicial object is the one arising from a comonad. Indeed, if
G is a comonad in an arbitrary category D, it induces a simplicial object GA for each
object A in D. To be able to compute its homology, we have to ‘push’ it forwards into a
semi-abelian category A. It can be done thanks to a functor E : D → A. The induced
homology is then called a comonadic homology and is denoted by Hn(A,E)G. A natural
issue about this homology is to know what happens if the parameters A, E or G change.
We shall see that it is actually a functor in A and E. But what about the third parameter?
The main goal of this essay will be to prove that Hn(A,E)G and Hn(A,E)K are naturally
isomorphic if G and K generate the same Kan projective class (theorem 4.10). The main
part of the work will be accomplished in chapter 3 where we shall prove a Comparison
Theorem (3.21) to create and compare maps between simplicial objects.

Fortunately, this homology is really useful in almost all algebraic subject of Mathematics.
Indeed, many well-known homology theories come from a comonadic homology, e.g. Tor
and Ext functors in Commutative Algebra, singular and simplicial homologies in Algebraic
Topology, integral group homology in Group Theory, and so forth.

1





2 Semi-Abelian Categories

As announced in the introduction, we are going to work in semi-abelian categories. In this
chapter, we define this notion and state its first few properties. In the last two sections
of this chapter, we define exact sequences and their homology in a semi-abelian category,
which will be useful in chapters 3 and 4.

2.1 Relations

In this section, we define the notion of a relation in a finitely complete category. We shall
need it to define exact and semi-abelian categories. It will be clear that the following
definitions are generalizations of the concept of relations as we know it in the category of
sets.

Definition 2.1. Let C be a finitely complete category and X,Y ∈ ob C. A relation R

between X and Y is the data of two morphisms X R
d0oo d1 // Y in C such that the

induced map R
(d0,d1)// X × Y is a monomorphism. A relation is said to be internal if

X = Y .

Example 2.2. If C = Set, (d0, d1) is a monomorphism if and only if R is a subset of
X × Y , i.e. R is a relation (in the usual sense) between X and Y .

Definition 2.3. Let C be a finitely complete category and R
d0 //
d1
// X a (internal) relation

in C. We say that R is reflexive if X
(1X ,1X)// X ×X factors through R

(d0,d1)// X ×X .

Example 2.4. If we go back to our example (i.e. C = Set), it is equivalent to the ‘usual’

definition of reflexivity. Indeed, R is reflexive if and only if there is a function X
h // R

such that d0h = d1h = 1X . Or, equivalently, if and only if for all x ∈ X, there is a r ∈ R
such that (d0(r), d1(r)) = (x, x).

Definition 2.5. Let C be a finitely complete category and R
d0 //
d1
// X a relation in C. R

is said to be symmetric if there exists a morphism R
σ // R such that d0 ◦ σ = d1 and

d1 ◦ σ = d0.

Example 2.6. Again, if C = Set, there is no difference between the usual notion of
symmetric relation and the categorical one. Indeed, the existence of such a σ is equivalent
to the the existence, for all couples (d0(r), d1(r)) in the relation, of an r′ ∈ R such that
(d1(r), d0(r)) = (d0(r′), d1(r′)), which is in the relation.
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2. Semi-Abelian Categories

Definition 2.7. Let C be a finitely complete category and R
d0 //
d1
// X a relation in C.

Let P be the pullback of d0 along d1:

P
p0 //

p1
��

R

d0
��

R
d1
// X

R is a transitive relation if there is a morphism P
p2 // R such that d0 ◦ p1 = d0 ◦ p2

and d1 ◦ p2 = d1 ◦ p0.

Example 2.8. This time, to prove the equivalence of the definitions of transitive relation
in C = Set, we can prove that P = {(r0, r1) ∈ R2 | d0(r0) = d1(r1)}. Therefore, such
a p2 exists if and only if for all pairs of couples (d0(r1), d1(r1)), (d0(r0), d1(r0)) in the
relation with d1(r1) = d0(r0), there is a element p2(r0, r1) ∈ R such that (d0(r1), d1(r0)) =
(d0(p2(r0, r1)), d1(p2(r0, r1))) is in the relation, i.e. if and only if R is transitive in the
usual way.

Definition 2.9. In a finitely complete category, a equivalence relation is a reflexive,
symmetric and transitive relation.

Example 2.10. In Set, the notion of equivalence relation is the same as the usual one.

As the following lemma says, we already know a lot of equivalence relations in any
finitely complete category.

Lemma 2.11. In a finitely complete category, every kernel pair is a equivalence relation.

Proof. This is straightforward from the definition of kernel pair.

This lemma leads us naturally to the following definition.

Definition 2.12. In a finitely complete category, a equivalence relation is said to be
effective if it is a kernel pair.

2.2 Definition and examples of semi-abelian categories

We are now able to define a semi-abelian category.

Definition 2.13. A regular category is a finitely complete category where every kernel
pair has a coequalizer and where pullbacks preserve regular epimorphisms.

Definition 2.14. A category is Barr exact if it is regular and if every equivalence relation
is effective.

Definition 2.15. A pointed category with kernels is called Bourn protomodular if it
satisfies the regular Short Five Lemma, i.e., if for all commutative diagrams

Ker f
ker f //

k
��

A
f //

a
��

B

b
��

Ker f ′
ker f ′

// A′
f ′
// B′
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2.2. Definition and examples of semi-abelian categories

where f and f ′ are regular epimorphisms and k and b are isomorphisms, we have that a
is also an isomorphism.

Definition 2.16. A category A is semi-abelian when it is pointed, Barr exact, Bourn
protomodular and has binary coproducts.

Fortunately, an abelian category is semi-abelian (see example 2.18). But there are other
examples. The most frequent example of a semi-abelian category which is not abelian is
Gp.

Example 2.17. The category Gp of groups is semi-abelian. Indeed, we already know
that it is pointed, complete and cocomplete. Moreover, we know that every epimorphism

is normal and that the pullback of G
f // K along H

f ′ // K is

P = {(g, h) ∈ G×H | f(g) = f ′(h)}

with the canonical projections. So, if f is an epimorphism, P
π2 // H is also a (regular)

epimorphism. In addition, we can prove as we did for Set that an equivalence relation in
Gp is an equivalence relation in the usual sense which is compatible with the group law.
So, for each equivalence relation R 6 G × G, the congruence class of 1, [1], is a normal

subgroup of G and R is the kernel pair of G
π // G/[1] . It remains to prove that Gp

is Bourn protomodular. To do so, it is enough to prove that a is injective and surjective
which is straightforward since we can do it elementwise.

Example 2.18. Every abelian category is semi-abelian. Indeed, we already know that
such a category is pointed, finitely complete and cocomplete, Bourn protomodular and
pullbacks preserve (regular) epimorphisms. So it remains to show that every equivalence
relation is effective.

Let R
d0 //
d1
// X be an equivalence relation in an abelian category A. Since this rela-

tion is reflexive, there is a map X
s // R such that d0s = d1s = 1X . Let us write

k = ker d1 ∈ A(K,R) and n = d0k ∈ A(K,X). If there is a map x such that nx = 0,
we deduce that d0kx = 0 and d1kx = 0. But (d0, d1) is a monomorphism, so kx = 0
and x = 0. This implies that n is a monomorphism. Let q = cokern ∈ A(X,Y ). Thus
n = ker q. Moreover, we have that qd1k = 0 = qn = qd0k. But d1(1X − sd1) = 0,
so 1X − sd1 factors through k. Therefore qd1(1X − sd1) = qd0(1X − sd1) which implies
qd1 = qd0. Consider the kernel pair of q.

R
d1

##

d0

��

t

  
S

s1 //

s2
��

X

q

��
X q

// Y

We know there is a unique map R
t // S such that s1t = d1 and s2t = d0. Since q is an

epimorphism, s1 and s2 are also epimorphisms. By definition of t and k, s1tk = d1k = 0.

Let’s prove that tk = ker s1. Consider a map Z
z // S such that s1z = 0. Since

qs2z = qs1z = 0, there exists a morphism Z
m // K such that s2z = nv = d0kv = s2tkv.

5



2. Semi-Abelian Categories

But s1z = 0 = s1tkv. Consequently, by definition of s1 and s2, z = tkv. In addition,
n = d0k = s2tk is a monomorphism, so such a v is unique. Thus tk = ker s1 and

K
k // R

d1 //

t
��

X

K
ker s1

// S s1
// X

commutes. Notice that since d1 and s1 are epimorphisms, the rows are exact. Thus we can

apply the Short Five Lemma and deduce that t is an isomorphism. Therefore, R
d0 //
d1
// X

is the kernel pair of q and the equivalence relation is effective.

Notice that we did not use the fact that the relation was symmetric and transitive.
Actually, in every semi-abelian category, reflexive relations are transitive and symmetric
(see section 2.4).

2.3 Image factorisation

In order to define exact sequences in semi-abelian categories, we need a image factorisation.
To do so, we only need to work with regular categories.

Lemma 2.19. Let A be a category with kernel pairs and their coequalizer. If Q
q1 //
q2
// A

is the kernel pair of f ∈ A(A,B) and if A
p // I is the coequalizer of q1 and q2, then

Q
q1 //
q2
// A is the kernel pair of p.

Proof. We know that pq1 = pq2. Since fq1 = fq2, there is a morphism I
i // B such

that ip = f .

Q
q1 //
q2
// A

p //

f ��

I

i
��
B

Let Z
x //
y
// A be two morphisms such that px = py. Thus, fx = ipx = ipy = fy. Since

Q
q1 //
q2
// A is the kernel pair of f , there is an unique morphism Z

m // Q such that

q1m = x and q2m = y. So Q
q1 //
q2
// A is the kernel pair of p.

Here is the expected image factorisation.

Proposition 2.20 (Image Factorisation). Let A be a regular category. Every morphism
f ∈ A(A,B) can be written as f = ip, where i is a monomorphism and p a regular
epimorphism. Moreover, this factorisation is unique up to isomorphism.
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2.3. Image factorisation

Proof. Let Q
q1 //
q2
// A be the kernel pair of f and A

p // I the coequalizer of q1 and

q2. By definition, p is a regular epimorphism. Since fq1 = fq2, there is a unique map

I
i // B such that f = ip. So, it remains to show that i is a monomorphism.

Q
q1 //
q2
// A

p //

f ��

I

i
��
B

Let R
r1 //
r2
// I be the kernel pair of i and I

k // K the coequalizer of r1 and r2. Let’s

prove that Q
q1 //
q2
// A is the kernel pair of kp: Firstly, we know that kpq1 = kpq2. Now,

suppose there are two maps Z
x //
y
// A such that kpx = kpy.

Z
x

""
y

��

Q
q1 //

q2
��

A

kp
��

A
kp
// K

But, by lemma 2.19, R
r1 //
r2
// I is the kernel pair of k. So there is a morphism Z

z // R

such that r1z = px and r2z = py.

Z
z

��

px

""
py

��

R
r1 //

r2
��

I

k
��

I
k
// K

Hence, fx = ipx = ir1z = ir2z = ipy = fy. Therefore, there is a unique map Z
m // Q

such that q1m = x and q2m = y.

Z
m

��

x

""
y

��

Q
q1 //

q2
��

A

f
��

A
f
// B

So we have just proved that Q
q1 //
q2
// A is the kernel pair of kp. But we know that

pq1 = pq2. This implies that there is a morphism K
n // I such that nkp = p. Since p is

7



2. Semi-Abelian Categories

a (regular) epimorphism, we deduce that nk = 1I and thus k is a monomorphism. Since A
is a regular category, pullbacks preserve monomorphisms and regular epimorphisms. Recall

that R
r1 //
r2
// I is the kernel pair of k. Therefore, r1 and r2 are both monomorphisms and

regular epimorphisms. So, they are both isomorphisms. But by definition R
r1 //
r2
// I is

the kernel pair of i. So this can happen only if i is a monomorphism. Indeed, there is

a morphism I
r // R such that r1r = 1I = r2r. Thus r1 = r2 since they are both

isomorphisms. Therefore, if there are two maps C
c1 //
c2
// I such that ic1 = ic2, there is a

map C
c // R with c1 = r1c = r2c = c2.

For uniqueness, suppose there are morphisms A
p′ // I ′

i′ // B such that f = i′p′, i′ is
a monomorphism and p′ a regular epimorphism. We know that i′p′q1 = fq1 = fq2 = i′p′q2,

and so p′q1 = p′q2. But p is the coequalizer of Q
q1 //
q2
// A . Thus there is a map I

j // I ′

such that jp = p′.

Q
q1 //
q2
// A

p //

p′ ��

I

j
��
I ′

Since p′ is a regular epimorphism, we can find two arrows X
x1 //
x2
// A which have p′

as coequalizer. So we have ipx1 = i′p′x1 = i′p′x2 = ipx2 and px1 = px2 since i is a

monomorphism. Therefore, there is a map I ′
j′ // I such that j′p′ = p.

X
x1 //
x2
// A

p′ //

p
��

I ′

j′

��
I

Thus jj′p′ = jp = p′ and jj′ = 1I′ since p′ is an epimorphism. We can prove in a similar
way that j′j = 1I , hence j and j′ are isomorphisms. Finally, ip = i′jp. Thus i = i′j and
the factorisation is unique up to isomorphism.

This proposition leads us to the following definition.

Definition 2.21. Let A
f // B be a morphism in a regular category A. If f = ip with

i ∈ A(I,B) a monomorphism and p ∈ A(A, I) a regular epimorphism, we know that p is
the coequalizer of the kernel pair of f . We call i and p respectively the image and the
coimage of f and we write i = im f , p = coim f and I = Im f . This factorisation is called
the image factorisation of f .

As in the abelian case, we can prove the following property of the image factorisation.

Proposition 2.22. In a regular category A, the image factorisation is functorial, i.e. if
we have a commutative diagram

A
f //

a
��

B

b
��

A′
f ′
// B′

8



2.3. Image factorisation

with A
p // I

i // B and A′
p′ // I ′

i′ // B′ the image factorisations of f and f ′

respectively, then there is a unique morphism I
j // I ′ such that

A
p //

a
��

I
i //

j
��

B

b
��

A′
p′
// I ′

i′
// B′

commute.

Proof. Let Q
q1 //
q2
// A and Q′

q′1 //

q′2

// A′ be the kernel pairs of f and f ′ respectively. We

know that their coequalizers are p and p′ respectively. Since f ′aq1 = bfq1 = bfq2 = f ′aq2,

there is a morphism Q
g // Q′ such that q′1g = aq1 and q′2g = aq2.

Q
aq1

##

g

��

aq2

��

Q′
q′1 //

q′2
��

A′

f ′

��
A′

f ′
// B′

Therefore, we can compute p′aq1 = p′q′1g = p′q′2g = p′aq2. Thus, since p is the coequalizer

of Q
q1 //
q2
// A , there is a unique morphism I

j // I ′ such that jp = p′a. Finally, to

prove that i′j = bi, it is enough to show that i′jp = bip since p is an epimorphism. But
i′jp = i′p′a = f ′a = bf = bip which concludes the proof.

Recall that in an arbitrary category, if gf is a regular epimorphism and f is an epimor-
phism, it follows that g is a regular epimorphism. As corollary of the last proposition, in
a regular category, we do not need the assumption that f is an epimorphism.

Corollary 2.23. If gf is a regular epimorphism in a regular category, then g is a regular
epimorphism.

Proof. Let g = ip the image factorisation of g. Of course, the image factorisation of gf is
1 ◦ (gf). So, by proposition 2.22, there exists a morphism j making the following diagram
commute.

A
gf //

f
��

C

j
��

C

B p
// I

i
// C

Thus ij = 1C , so i is a split epimorphism and a monomorphism. Hence i is an isomorphism
and g a regular epimorphism.

9



2. Semi-Abelian Categories

2.4 Finite cocompleteness

Another interesting property that a category may have is completeness or cocompleteness.
We already know that semi-abelian categories are finitely complete. In this section, we
state that they are actually finitely cocomplete. To show this, one can use the fact that
they are Mal’cev. This property will also be useful further in the essay. For brevity, we
do not prove these propositions here.

Definition 2.24. A finitely complete category is said to be Mal’cev if each reflexive
relation is an equivalence relation.

Proposition 2.25. [4, Proposition 5.1.2]

Every semi-abelian category is Mal’cev.

Proposition 2.26. [3, Proposition 3.10]

Every semi-abelian category is finitely cocomplete.

2.5 Equivalences of epimorphisms

In this section, we shall see that in a semi-abelian category, the notions of strong, regular
and normal epimorphisms are equivalent.

Proposition 2.27. [4, Corollary A.5.4.1]

Let A
f // B be a morphism in a regular category A. Then f is a strong epimorphism

if and only if it is a regular epimorphism.

This proposition has a corollary which is really useful when we work with image fac-
torisation. We shall not always refer to it when it is used.

Corollary 2.28. In a regular category, the composition of two regular epimorphisms is a
regular epimorphism.

Proof. It is enough to show that if f ∈ A(A,B) and g ∈ A(B,C) are strong epimorphisms,
then so is gf . But this is proposition A.4.5.2 in [4].

Now, if we come back to our factorisation, we can prove that in the case where A is
semi-abelian (not only regular), we actually have a (normal epi - mono) factorisation.
Indeed, we can prove that every regular epimorphism is normal.

Proposition 2.29. In a semi-abelian category, every regular epimorphism is a normal
epimorphism.

Proof. Let B
p // C be a regular epimorphism in A, a semi-abelian category. Let

q = coker(ker p) ∈ A(B,C ′). We have to prove that p and q are isomorphic. Since ker p
is a normal monomorphism, ker q = ker(coker(ker p)) = ker p. By definition of q and since

p◦ker p = 0, there is a unique morphism C ′
m // C such thatmq = p. Let A

x //
y
// B and

A′
x′ //

y′
// B be the kernel pairs of p and q respectively. Since px′ = mqx′ = mqy′ = py′,

10



2.5. Equivalences of epimorphisms

there is a morphism A′
a // A such that xa = x′ and ya = y′.

A′

a

  

x′

##

y′

��

A
x //

y

��

B

p

��
B p

// C

Moreover, since p◦0 = 0 = p◦ker p, there is a unique map Ker p
k // A such that xk = 0

and yk = ker p. Because ker p = ker q, we have also a unique map Ker p
k′ // A′ such

that x′k′ = 0 and y′k′ = ker p.

Ker p

k′

""

0

$$

ker p

��

A′
x′ //

y′

��

B

q
��

B q
// C ′

But we know that xak′ = x′k′ = 0 and yak′ = y′k′ = ker p. So ak′ = k. Let’s prove that

k = kerx: We know that xk = 0. Suppose there is a map Z
z // A such that xz = 0.

Z
z

$$

��

Ker p
k //

��

A

x
��

0 // B

So pyz = pxz = 0. Hence, there is a unique map Z
w // Ker p such that (ker p)◦w = yz.

Z
w

""

yz

%%

��

Ker p
ker p

//

��

B

p

��
0 // C

Thus, ykw = (ker p) ◦ w = yz. But since A
x //
y
// B is the kernel pair of p, z = kw (the

following diagram commute).
Z

z ''

kw

��

xkw=0

��

ykw

  

A
x //

y

��

B

p

��
B p

// C

11



2. Semi-Abelian Categories

But if there is another Z
w′ // Ker p such that z = kw′, we would have yz = ykw′ =

(ker p) ◦ w′ and so w = w′ by uniqueness of w. So k = kerx. By a similar reasoning, we
prove that k′ = kerx′. Therefore, this diagram commute.

Ker p //
k′ // A′

a

��

x′ // // B

Ker p //
k
// A x

// // B

In addition x and x′ are regular epimorphisms since they are the pullback of p and q
respectively and A is regular. Therefore, by the regular Short Five Lemma, a is an

isomorphism. So, by definition of a, A′
x′ //

y′
// B is the kernel pair of p. So we know

that A′
x′ //

y′
// B is the kernel pair of p and q and that p and q are regular epimorphisms.

Therefore, by the image factorisation, we conclude that p and q are both the coequalizer

of A′
x′ //

y′
// B and so they are isomorphic.

As corollary, we can now prove two lemmas we have seen in the case of abelian categories.

Lemma 2.30. In a semi-abelian category, a morphism A
f // B is a monomorphism if

and only if Ker f = 0.

Proof. If f is a monomorphism, it suffices to notice that fg = 0 if and only if g = 0.
Conversely, suppose Ker f = 0. Let f = ip be the image factorisation of f . Since
ker f = 0 // A , we know that ker p = 0 // A . But p is a normal epimorphism.
So, p = coker(ker p) = coker( 0 // A ) = 1A and f = i is a monomorphism.

Lemma 2.31. In a semi-abelian category, pullbacks reflect monomorphisms.

Proof. Consider a pullback square where m is a monomorphism and take the following
kernels:

0 = Kerm

a
��

kerm // P
m //

n
��

B

g

��
Ker f

ker f
// A

f
// C

By a well-known result about kernels and pullbacks (see lemma 4.2.4 in [4]), the induced
map a is an isomorphism. So Ker f = 0 and f is a monomorphism.

2.6 Exact sequences

Thanks to the (normal epi - mono) factorisation, we can define exact sequences and prove
their properties in a similar way that one can do for abelian categories. We recall them
here.

12



2.6. Exact sequences

Definition 2.32. In a semi-abelian category A, a short exact sequence (s.e.s.) is a
sequence of morphisms

0 // A
f // B

g // C // 0 (2.1)

such that f = ker g and g = coker f .

Definition 2.33. In a semi-abelian category, a sequence A
f // B

g // C is exact at
B if im f = ker g.

Definition 2.34. In a semi-abelian category, a sequence · · ·An+1
// An // An−1 · · ·

is exact if it is exact at each internal An.

There is a well-known link between exactness of a sequence and its image factorisation.

Lemma 2.35. If A
f // B

g // C is a sequence in a semi-abelian category, and if f = ip

and g = jq are the image factorisations of f and g, then A
f // B

g // C is exact if

and only if 0 // I
i // B

q // J // 0 is a short exact sequence.

Proof. Let us proof the ‘if’ part:

We know that i = ker q and q = coker i. So jqi = 0. If Z
z // B is such that jqz = 0,

Z
z

""

��

I
i //

��

B

jq
��

0 // C

then qz = 0 since j is a monomorphism. Thus, there is a unique map Z
m // I such that

im = z because i = ker q. Therefore, i = ker jq = ker g and A
f // B

g // C is exact.
For the ‘only if’ part, we know that i = ker jq. So qi = 0 since jqi = 0 and j is a

monomorphism. Suppose there is a map X
x // B such that qx = 0.

X
x

""

��

I
i //

��

B

q

��
0 // J

So jqx = 0. Thus, there is a unique map X
n // I such that in = x. Therefore, i = ker q.

But q is a normal epimorphism. So q = coker(ker q) = coker i and we have proved that

0 // I
i // B

q // J // 0 is a short exact sequence.

There are many examples of exact sequences.

Lemma 2.36. In a semi-abelian category, the following equivalences hold:

1. 0 // A
f // B is exact if and only if f is a monomorphism.

13



2. Semi-Abelian Categories

2. B
g // C // 0 is exact if and only if g is a normal epimorphism.

3. 0 // A
f // B

g // C is exact if and only if f = ker g.

4. A
f // B

g // C // 0 is exact if and only if g = coker f and im f is a normal
monomorphism.

5. 0 // A
f // B

g // C // 0 is exact if and only if it is a short exact sequence.

6. 0 // A
f // B // 0 is exact if and only if f is an isomorphism.

Proof. Since 0 // A is a monomorphism, the first equivalence is exactly the one given
given by lemma 2.30. For the second one, notice that ker( C // 0 ) = 1C and g is a
normal epimorphism if and only if im g = 1C . The third equivalence follows from the first
one.

Let’s prove the fourth equivalence: For the ‘only if’ part, let f = ip be the image
factorisation of f . We know that i = ker g and g is a normal epimorphism by the second
equivalence. So, i is a normal monomorphism. But since p is an epimorphism, coker f =
coker i. So g = coker(ker g) = coker i = coker f . For the ‘if’ part, again, let f = ip be
the image factorisation of f . We know that coker f = coker i and i = ker(coker i). So,
i = ker(coker i) = ker(coker f) = ker g and g is a normal epimorphism since g = coker f .

Moreover, the third and fourth equivalences imply the fifth one. (Notice that if f = ker g,
then im f = f = ker g is a normal monomorphism). Finally, the last equivalence is implied
by the first and second one. Indeed, if f is an isomorphism, f is a normal epimorphism
since coker(ker f) = coker( 0 // A ) = f .

2.7 Homology of proper chain complexes

Now, let’s define the notion of homology. As for abelian categories, homology ‘measures’
the exactness of sequences. Unfortunately, to make the theory work, it is not enough
to assume that the sequence is complex. Indeed, we have to make the assumption that
morphisms are ‘proper’.

Definition 2.37. A morphism f in a semi-abelian category is a proper morphism if
im f is a normal monomorphism.

Definition 2.38. A complex (or chain complex) in a semi-abelian category A is a
sequence of morphisms

· · · // Cn+1
dn+1 // Cn

dn // Cn−1
// · · ·

such that dndn+1 = 0 for all n ∈ Z. A complex is called a proper chain complex
if dn is a proper morphism for all n ∈ Z. We denote by ChA the category which has
chain complexes in A as objects and a morphism f ∈ ChA(C•, D•) is the data of maps
fn ∈ A(Cn, Dn) for all n ∈ Z such that

· · · // Cn+1

fn+1

��

dn+1 // Cn

fn
��

dn // Cn−1

fn−1

��

// · · ·

· · · // Dn+1
d′n+1

// Dn
d′n

// Dn−1
// · · ·

14



2.7. Homology of proper chain complexes

commutes. Let PChA be the full subcategory of ChA of proper chain complexes.

We can prove some useful lemmas to identify proper morphisms.

Lemma 2.39. Let A be a semi-abelian category, f ∈ A(A,B) and m ∈ A(B,C) such that
m is a monomorphism and mf is a proper morphism. Then f is also a proper morphism.

Proof. Let f = ip be the image factorisation of f . So, since m is a monomorphism,
mi = im(mf) and mi is a normal monomorphism. Suppose mi = ker g where g ∈ A(C,D).

So gmi = 0. If there is a map Z
z // B such that gmz = 0,

Z
z

""

��

I
i //

��

B

gm

��
0 // D

then there is a unique map Z
w // I such that miw = mz, i.e. iw = z. So i = ker(gm)

and f is a proper morphism.

In order to prove another lemma about proper morphisms, we have to show the following
one.

Lemma 2.40. Let A be a semi-abelian category, f ∈ A(A,B) and g ∈ A(A,C) two
regular epimorphisms and the following diagram their pushout.

A

f
��

g // C

q1
��

B q2
// Q

If P is the pullback of q1 and q2 and if e is the unique map making

A
e

��

f

��

g

""
P

p1
��

p2 // C

q1
��

B q2
// Q

commute, then e is a regular epimorphism.

Proof. Let F
f1 //
f2
// A and G

g1 //
g2
// A be the kernel pairs of f and g respectively. So

we know there exist two morphisms A
a1 // F and A

a2 // G such that f1a1 = f2a1 =
g1a2 = g2a2 = 1A. Consider M the pullback of f2 and g1 and let n be the arrow making

15



2. Semi-Abelian Categories

the following diagram commute.

A
n

  

a2

##
a1

��

M
u2 //

u1
��

G

g1
��

F
f2
// A

Let ip be the image factorisation of M
(f1u1,g2u2) // A×A . Since the image factorisation is

functorial (proposition 2.22) and (f1u1, g2u2)n = (1A, 1A), there is a morphism n′ making
the diagram

A

n
��

A
(1A,1A) //

n′

��

A×A

M p
// I

i
// A×A

commute. So, if we set i = (i1, i2), the relation I
i1 //
i2
// A is reflexive. But since A is

Mal’cev (proposition 2.25) and Barr exact, there exists a morphism A
t // D such that

I
i1 //
i2
// A is the kernel pair of t. Moreover, by lemma 2.19, we can suppose t to be the

coequalizer of i1 and i2. Consider now the map G
k // F making the diagram

G
k

��

g1

""
g1

��

F
f2 //

f1
��

A

f
��

A
f
// B

commute. Since f2k = g1, there is a morphism G
l //M such that the following diagram

commutes.

G
l

  

1G

##

k

��

M
u2 //

u1
��

G

g1
��

F
f2
// A

Hence the morphism G
l //M

(f1u1,g2u2) // A×A is nothing but (g1, g2). Thus g1 = i1pl
and g2 = i2pl. So, tg1 = tg2. Recall from definition 2.21 that, since g is a regular
epimorphism, it is the coequalizer of its kernel pair. Consequently, we can find a map

16



2.7. Homology of proper chain complexes

C
r // D such that rg = t. Similarly, there is a map B

s // D such that sf = t.

G
g1 //
g2
// A

g //

t   

C

r
��
D

F
f1 //
f2
// A

f //

t   

B

s
��
D

Let’s prove that

A
g //

f
��

C

r
��

B s
// D

(2.2)

is a pushout square. Suppose that B
x // Z and C

y // Z are two maps such that
xf = yg. So we can compute

ygi1p = xff1u1

= xff2u1

= ygg1u2

= ygg2u2

= ygi2p.

This implies ygi1 = ygi2. Keeping in mind that t is the coequalizer of i1 and i2, we

know there is a unique map D
z // Z such that zt = yg. But this occurs if and only if

zrg = yg and zsf = xf which happens if and only if zr = y and zs = x. Therefore, the

square (2.2) is a pushout. So we can assume C
q1 // Q = C

r // D and B
q2 // Q =

B
s // D . Now we shall use the fact that a composition of two regular epimorphisms

is a regular epimorphism (corollary 2.28) and the well-known property saying that if a
rectangle diagram is made of small pullback squares, then it is a pullback (see proposition
2.5.9 in [2]). So, consider the following diagram where all rectangles are pullbacks.

I
v′2 //

v′1
��

W
w2 //

w1

��

A

g

��
V

v2 //

v1
��

P
p2 //

p1
��

C

r
��

A
f
// B s

// D

Since sf = rg = t, i1 = v1v
′
1 and i2 = w2v

′
2. Finally, if we keep in mind that pullbacks

17
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preserve regular epimorphisms, we can compute

im(f, g) = im(fg1u2, gg1u2)

= im(ff2u1, gg1u2)

= im(ff1u1, gg2u2)

= im(fi1p, gi2p)

= im(fi1, gi2)

= im(fv1v
′
1, gw2v

′
2)

= im(p1w1v
′
2, p2w1v

′
2)

= im(p1, p2)

= (p1, p2),

which proves that (f, g) = (p1, p2)e is the image factorisation of A
(f,g) // B × C . Therefore

e is a regular epimorphism.

Now we are able to prove that, if f = pi (rather than ip in the image factorisation) with
i and p normal, then f is proper.

Lemma 2.41. Let f ∈ A(A,B) where A is a semi-abelian category. If f = p′i′ where p′

is a normal epimorphism and i′ a normal monomorphism, then f is a proper morphism.

Proof. Let f = ip be the image factorisation of f . We have to show that i is a normal
monomorphism.

A
p //

i′
��

I

i
��

I ′
p′
// B

Let e = coker i′ ∈ A(I ′, C). Since i′ is a normal monomorphism, i′ = ker e. Consider Q
the pushout of e and p′. Denote by P the pullback of this pushout.

I ′
p′ //

e

��

B

q1
��

C q2
// Q

P
p1 //

p2
��

B

q1
��

C q2
// Q

Let I ′
h // P be the unique map such that p1h = p′ and p2h = e. By lemma 2.40, h

is a regular epimorphism. Now let k = ker p2 ∈ A(K,P ). We are going to prove that
p1k = ker q1. First notice that q1p1k = q2p2k = 0. Now suppose that there is a map

Z
z // B such that q1z = 0. So we know the existence of a morphism Z

m // P such
that p1m = z and p2m = 0.

Z
m

��

z

""

0

��

P
p1 //

p2
��

B

q1
��

C q2
// Q

18



2.7. Homology of proper chain complexes

Therefore there is a map Z
n // K satisfying kn = m and so p1kn = z. But if

p1kx = p1ky for some maps x and y, this implies kx = ky since p2kx = 0 = p2ky and P is
a pullback. So x = y and p1k is a monomorphism. So there is only one n with p1kn = z
and we can conclude that p1k = ker q1. Now, notice that q1ip = q1p

′i′ = q2ei
′ = 0. Thus

q1i = 0. So there is a map t making

I
t

��

��

i

""
K

��

p1k // B

q1
��

0 // Q

commute and t is a monomorphism as i is. But p1ktp = ip = p′i′ = p1hi
′ and

p2ktp = 0 = ei′ = p2hi
′. Consequently, ktp = hi′.

A
i′ //

tp
��

I ′
e //

h
��

C

K
k
// P p2

// C

Since 1C is a monomorphism, by lemma 4.2.4 in [4], we know that the left-hand square is
a pullback. But h is a regular epimorphism and pullbacks preserve them in a semi-abelian
category. So tp is a regular epimorphism. Therefore t is a regular epimorphism. But since
it is a monomorphism, it is a isomorphism. So i = ker q1 which is a normal monomorphism.

Now, let’s define the homology of a proper chain complex.

Definition 2.42. Let C• = · · · // Cn+1
dn+1 // Cn

dn // Cn−1
// · · · be a proper

chain complex in a semi-abelian category A. If d′n+1 is the unique morphism such that
ker dn ◦ d′n+1 = dn+1, we denote by Hn(C•) the object Coker d′n+1 and we call it the nth

homology of C•.

Cn+1

d′n+1 $$

dn+1 // Cn
dn // Cn−1

Ker dn

ker dn

;;

coker d′n+1

��
Hn(C•)

(2.3)

If C•
f // D• ,

· · · // Cn+1

fn+1

��

dn+1 // Cn

fn
��

dn // Cn−1

fn−1

��

// · · ·

· · · // Dn+1 en+1

// Dn en
// Dn−1

// · · ·

we can define Hn(f) ∈ A(Hn(C•), Hn(D•)) as the unique map such that Hn(f)◦coker d′n+1

= coker e′n+1 ◦Znf where Znf is the map such that ker en ◦Znf = fn ◦ ker dn. So we have
defined a functor Hn : PChA → A for all n ∈ Z.
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2. Semi-Abelian Categories

We could have defined the homology dually.

Lemma 2.43. [10, Proposition 2.3]
Let C• be a proper chain complex in a semi-abelian category. If d′′n is the unique map

such that d′′n ◦ coker dn+1 = dn, then Ker d′′n = Hn(C•).

Cn+1

d′n+1 $$

dn+1 // Cn
dn //

coker dn+1

%%

Cn−1

Ker dn

ker dn
;;

coker d′n+1

��

Coker dn+1

d′′n
88

Hn(C•) Hn(C•)

ker d′′n

OO

(2.4)

Due to this lemma, we could have also defined the action of Hn on the arrows of PChA
dually.

The following proposition explains why homology ‘measures’ exactness.

Proposition 2.44. Let C• be a proper chain complex in a semi-abelian category. C• is
exact at Cn if and only if Hn(C•) = 0.

Proof. Let dn+1 = ip be the image factorisation of dn+1. So dni = 0 and there is a unique
map m such that ker dn ◦m = i. Since i is a monomorphism, m is also a monomorphism.
Moreover, we know that dn+1 is a proper morphism. So i is a normal monomorphism and
by lemma 2.39, m is a normal monomorphism. In addition, we know that mp = d′n+1.
But since p is an epimorphism, coker d′n+1 = coker(mp) = cokerm.

Cn+1

p

!!

dn+1 // Cn
dn // Cn−1

I

i
22

m // Ker dn

ker dn

99

cokerm

%%
Hn(C•)

C• is exact at Cn if and only if i = ker dn, i.e. if and only if m is an isomorphism. But if m is
an isomorphism, Hn(C•) = Cokerm = 0. Conversely, if Cokerm = 0, since m is a normal
monomorphism, m = ker(cokerm) = ker( Ker dn // 0 ) which is an isomorphism.
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3 Simplicial Objects

At the end of chapter 2, we defined the homology of a proper chain complex. In this
chapter, we are going to introduce simplicial objects. As we shall see, these objects induce
a proper chain complex, and therefore homology functors. The aim here is to prove a
Comparison Theorem to create maps between simplicial objects and compare their image
under the induced homology functors.

3.1 Simplicial objects and their homology

In this section, we define simplicial objects and their induced homology. We also give the
first properties of this homology. For any natural number n ∈ N0, let us fix the set [n] to
be [n] = {0, . . . , n}.

Definition 3.1. In a category A, a simplicial object A is the data of a sequence

(An)n∈N0 ⊂ ob A together with morphisms An
∂i // An−1 for each i ∈ [n] and n ∈ N

called face operators

· · ·
//////// A2

// //// A1
//// A0

and with morphisms An
σi // An+1 for each i ∈ [n] and n ∈ N0 named degeneracy

operators satisfying

∂i ◦ ∂j = ∂j−1 ◦ ∂i if i < j, (3.1)

σi ◦ σj = σj+1 ◦ σi if i 6 j, (3.2)

∂i ◦ σj =


σj−1 ◦ ∂i if i < j

1An if i = j or i = j + 1

σj ◦ ∂i−1 if i > j + 1

(3.3)

called the simplicial identities. We write SA for the category of simplicial objects

where a morphism A f // B is the data of fn ∈ A(An, Bn) for all n ∈ N0 such that
fn−1 ◦ ∂i = ∂′i ◦ fn for all n ∈ N and i ∈ [n] and fn ◦ σi = σ′i ◦ fn−1 for all n ∈ N and
i ∈ [n − 1]. Morphisms in SA are also called simplicial maps. If the fn’s commute
appropriately only with the face operators (the ∂i’s), we say it is a semi-simplicial map,
whereas the induced subcategory is denoted by S′A.

We can also define some particular elements in SA.

Definition 3.2. An augmented simplicial object is a simplicial object A with an

additional map A0
∂0 // A−1 such that ∂0 ◦ ∂0 = ∂0 ◦ ∂1. An augmented simplicial

map between two augmented simplicial objects is the data of fn ∈ A(An, Bn) for all
n > −1 which is a simplicial map and such that f−1◦∂0 = ∂′0◦f0. This form a subcategory
of SA denoted by ASA. As above, if the fn’s commute only with the face operators, we
call it an augmented semi-simplicial map and we write AS′A for the corresponding
subcategory.
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3. Simplicial Objects

A right-contractible augmented simplicial object is an augmented simplicial ob-

ject for which there exist maps An
hn // An+1 for n > −1 such that ∂n+1 ◦hn = 1An and

∂i ◦ hn = hn−1 ◦ ∂i for all i ∈ [n].

· · ·
// ////// A2

h2

WW
////// A1

h1

XX
//// A0

h0

XX
// A−1

h−1

XX

Similarly, a left-contractible augmented simplicial object is an augmented simplicial

object for which we can find morphisms An
hn // An+1 for n > −1 such that ∂0◦hn = 1An

and ∂i ◦ hn = hn−1 ◦ ∂i−1 for all i ∈ {1, . . . , n+ 1}.

Given a simplicial object A in a semi-abelian category A, let us write N−nA = 0 for

n ∈ N, N0A = A0 and NnA = Ker An
(∂j)j∈[n−1] // Ann−1 for n ∈ N. Thus, if n > 2, the

map NnA
ker (∂j)j∈[n−1] // An

∂n // An−1

(∂j)j∈[n−2] // An−1
n−2 is 0 since for all i ∈ [n− 2],

πi ◦ (∂j)j∈[n−2] ◦ ∂n ◦ ker (∂j)j∈[n−1] = ∂i ◦ ∂n ◦ ker (∂j)j∈[n−1]

= ∂n−1 ◦ ∂i ◦ ker (∂j)j∈[n−1]

= ∂n−1 ◦ π′i ◦ (∂j)j∈[n−1] ◦ ker (∂j)j∈[n−1]

= 0.

Therefore, there is a unique map NnA
dn // Nn−1A such that ker (∂j)j∈[n−2] ◦ dn =

∂n ◦ ker (∂j)j∈[n−1]. Hence, we can define the Moore complex as follow.

Definition 3.3. If A is a simplicial object in a semi-abelian category, we write N−nA = 0,

N0A = A0 and NnA = Ker An
(∂j)j∈[n−1] // Ann−1 for n ∈ N. The Moore complex (or

normalised chain complex) is the chain · · ·
dn+1 // NnA

dn // Nn−1A
dn−1 // · · · where dn

is the map induced by ∂n ◦ ker (∂j)j∈[n−1] if n > 0. We denote the Moore complex of A by

N(A).

As expected, the Moore complex is a proper chain complex.

Lemma 3.4. If A is a simplicial object in a semi-abelian category A, then N(A) is a
proper chain complex.

Proof. In one hand, we have to prove that dn ◦ dn+1 = 0 for all n ∈ Z. Since it is
trivial for n 6 0, we can suppose n > 0. For n > 2, we can prove it by showing that
ker (∂j)j∈[n−2] ◦ dn ◦ dn+1 = 0, which can be done by direct computations:

ker (∂j)j∈[n−2] ◦ dn ◦ dn+1 = ∂n ◦ ker (∂j)j∈[n−1] ◦ dn+1

= ∂n ◦ ∂n+1 ◦ ker (∂j)j∈[n]

= ∂n ◦ ∂n ◦ ker (∂j)j∈[n]

= 0.

For n = 1, we can use the same reasoning since d1 ◦ d2 = ∂1 ◦ ker ∂0 ◦ d2.
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3.1. Simplicial objects and their homology

In another hand, we have to prove that dn is a proper morphism for all n ∈ Z. If n 6 0,

NnA
dn // 0 is a normal epimorphism, so it is proper. Now, if n > 0, we know that

∂n ◦ σn−1 = 1An , so ∂n is a split epimorphism and thus a regular epimorphism. Since
d1 = ∂1 ◦ker ∂0 and ker (∂j)j∈[n−2] ◦dn = ∂n ◦ker (∂j)j∈[n−1] for n > 1, by lemma 2.39, it is

enough to prove that ∂n ◦ ker (∂j)j∈[n−1] is proper. But this is straight forward by lemma
2.41.

Notice that if we have a semi-simplicial map A f // B , it induces a morphism
N(f) ∈ PCh(N(A), N(B)). Indeed, let (N(f))0 = f0 and for n > 0, let (N(f))n be
the map making

Nn(A)

(N(f))n
��

// An

fn

��

(∂j)j∈[n−1] // Ann−1

fn−1

��
Nn(B) // Bn

(∂′j)
j∈[n−1]

// Bn
n−1

commute, where fn−1 is the unique map satisfying π′i◦fn−1 = fn−1◦πi for all i ∈ [n−1]. It
is a well-defined map in PChA because (N(f))n ◦dn+1 = d′n+1 ◦(N(f))n+1 since these two
maps are equal if we compose them with ker (∂′j)j∈[n−1]

. In particular, this construction

turns N into a functor SA → PChA.

Moreover, due to the previous lemma, we can define the homology sequence of N(A).

Definition 3.5. If A is a simplicial object in a semi-abelian category, we write HnA for

HnN(A). Moreover, if A f // B is a semi-simplicial map, we shall write Hnf for HnN(f)
if there is not any risk of confusion.

The following proposition gives us a better understanding of H0A.

Proposition 3.6. Let A be a simplicial object in a semi-abelian category A. Then, H0A

is the coequalizer of A1

∂0 //
∂1
// A0 .

Proof. We have to compute the homology at A0 of the sequence,

Ker ∂0
∂1 ker ∂0 // A0

// 0

which is, by the dual definition of homology (lemma 2.43), nothing but Coker(∂1 ker ∂0) .

Let c be the coequalizer of ∂0 and ∂1. So, we have to prove that c = coker(∂1 ker ∂0).

A1

∂0 //
∂1
// A0

c // C

First, notice that c∂1 ker ∂0 = c∂0 ker ∂0 = 0. Now, consider a map A0
f // D such

that f∂1 ker ∂0 = 0. By definition of c, we only have to show that f∂0 = f∂1. Let’s
recall from the definition of simplicial object that ∂0σ0 = ∂1σ0 = 1A0 . Hence ∂0 is a split
epimorphism, so it is a normal epimorphism since regular ones are normal (proposition
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3. Simplicial Objects

2.29). Therefore ∂0 = coker(ker ∂0).

Ker ∂0
ker ∂0 //

��

A1

f∂1

��

∂0
��

0

,,

// A0

m

  
D

Since f∂1 ker ∂0 = 0, there is a map m such that m∂0 = f∂1. Consequently, m = m∂0σ0 =
f∂1σ0 = f and f∂0 = f∂1, which concludes the proof.

We can even have a complete description of HnA if we consider a right-contractible
augmented simplicial object. In order to do so, let us prove a lemma, quite trivial, but
which will also be useful in section 3.2.

Lemma 3.7. Let A be a simplicial object in a semi-abelian category A. Then, for all
n ∈ N,

ker (∂j)j∈[n−1] ◦ ker dn = ker (∂j)j∈[n].

Proof. First, recall that, if n > 2, then ker (∂j)j∈[n−2] ◦ dn = ∂n ◦ ker (∂j)j∈[n−1], hence, for
all n ∈ N,

ker dn = ker
(
∂n ◦ ker (∂j)j∈[n−1]

)
. (3.4)

So, (∂j)j∈[n] ◦ker (∂j)j∈[n−1] ◦ker dn = 0. Now, suppose we have a map f ∈ A(B,An) such

that (∂j)j∈[n] ◦ f = 0.

B

��

f

""
Ker dn

ker (∂j)j∈[n−1]◦ker dn
//

��

An

(∂j)j∈[n]
��

0 // An+1
n−1

We know that f can be written as ker (∂j)j∈[n−1] ◦ f
′ for a f ′ ∈ A(B,NnA) because

(∂j)j∈[n−1] ◦ f = 0. But since ∂n ◦ ker (∂j)j∈[n−1] ◦ f
′ = 0 and (3.4), f ′ factors through

ker dn. Therefore f factors uniquely through ker (∂j)j∈[n−1] ◦ ker dn, which concludes the
proof.

Proposition 3.8. Let A be a right-contractible augmented simplicial object in a semi-
abelian category A. Then,

HnA =

{
A−1 if n = 0

0 if n 6= 0.
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3.2. Induced simplicial object and related results

Proof. There is nothing to prove if n < 0. If n = 0, we know that

A1

∂0 //
∂1
// A0

∂0 //

h0

XX A−1

h−1

XX

is a split coequalizer diagram. So, by proposition 3.6, H0A = A−1.
Now, if n > 0, we have to prove that the sequence N(A) is exact at NnA, i.e. im dn+1 =

ker dn. Let An+1
n

∂n // An+1
n−1 and An+1

n−1

hn−1 // An+1
n be the maps such that π′i∂n = ∂nπi

and πihn−1 = hn−1π
′
i for all i ∈ [n]. Recall that ∂n∂i = ∂i∂n+1 and ∂ihn = hn−1∂i for

all i ∈ [n]. Therefore, in the following diagram, the two upward and the two downward
squares commute,

Nn+1

ker (∂j)j∈[n] //

xn

��

An+1

(∂j)j∈[n] //

∂n+1

��

An+1
n

∂n
��

Ker dn

yn

OO

ker (∂j)j∈[n]

// An

hn

OO

(∂j)j∈[n]

// An+1
n−1

hn−1

OO

where xn and yn and the induced morphisms. Thus, xnyn = 1Ker dn since

ker (∂j)j∈[n] ◦ xnyn = ∂n+1 ◦ ker (∂j)j∈[n] ◦ yn
= ∂n+1hn ◦ ker (∂j)j∈[n]

= ker (∂j)j∈[n].

So xn is a regular epimorphism. But, by lemma 3.7 and definition of dn+1,

ker (∂j)j∈[n−1] ◦ ker dn ◦ xn = ker (∂j)j∈[n] ◦ xn
= ∂n+1 ◦ ker (∂j)j∈[n]

= ker (∂j)j∈[n−1] ◦ dn+1.

Therefore dn+1 = ker dn ◦ xn which is its image factorisation. So im dn+1 = ker dn.

3.2 Induced simplicial object and related results

It is often useful to know when two semi-simplicial maps have the same image under Hn.
Our aim in this section is to prove a result which gives a sufficient condition for that. The
key point in proving it is to construct a new simplicial object from a given one. To do so,
we need to assume that the category has finite limits. In particular, it will work in our
context of semi-abelian categories. But, first, let’s prove some lemmas used in this proof.

Lemma 3.9. Let A be a semi-abelian category, n ∈ N0 and fi ∈ A(B,C) for i ∈ [n+ 1].

Suppose we also have three morphisms A
x //
y //
z
// B such that fix = fiy for all i ∈ [n]

and fn+1y = fn+1z. Then, there exists a regular epimorphism Z
p // A and a map

Z
g // B satisfying fig = fizp for all i ∈ [n] and fn+1g = fn+1xp.
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3. Simplicial Objects

Proof. Let’s consider the following diagram where all squares are pullbacks.

R
r2 //

r1
��

Q
q2 //

q1
��

B

fn+1

��
P

p2 //

p1
��

B
fn+1 //

(fi)i∈[n]
��

C

B
(fi)i∈[n]

// Cn+1

Thus, by assumption, there exist morphisms e′ and e′′ making

A
y

$$
x

��

e′

��
P

p2 //

p1
��

B

(fi)i∈[n]
��

and

B
(fi)i∈[n]

// Cn+1

A
z

""
y

��

e′′

��
Q

q2 //

q1
��

B

fn+1

��
B

fn+1

// C

commute. Moreover, we have a morphism e for which

A
e′′

""

e′

��

e

��
R

r2 //

r1
��

Q

q1
��

P p2
// B

commutes. Hence, A
(x,z) // B2 = A

e // R
(p1r1,q2r2) // B2 .

Now, let us consider one more pullback.

S
s2 //

s1
��

P
p2 //

p1
��

B

(fi)i∈[n]
��

Q
q2 //

q1
��

B
(fi)i∈[n]

//

fn+1

��

Cn+1

B
fn+1

// C

Let S
p′ // I

(i1,i2) // B2 be the image factorisation of (q1s1, p2s2). Since P
p1 //
p2
// B and

Q
q1 //
q2
// B are (effective) equivalence relations, we can find P

σP // P , B
tP // P ,

Q
σQ // Q and B

tQ // Q such that p1σP = p2, p2σP = p1, p1tP = p2tP = 1B, q1σQ = q2,
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3.2. Induced simplicial object and related results

q2σQ = q1 and q1tQ = q2tQ = 1B. In particular, we can find a morphism tS such that

B

tQ

��

tS

  

tP

""
S

s2 //

s1
��

P

p1
��

Q q2
// B

commutes. Thus B
tS // S

p′ // I
(i1,i2) // B2 = B

(1B ,1B)// B2 and I
i1 //
i2
// B is a reflexive

relation. But since A is semi-abelian, it is Mal’cev (proposition 2.25) and so this relation

is an equivalence. So, let I
σ // I be a map such that i1σ = i2 and i2σ = i1. In addition,

we know that there is a morphism k making the following diagram commute,

R

σQr2

��

k

��

σP r1

""
S

s2 //

s1
��

P

p1
��

Q q2
// B

since p1σP r1 = p2r1 = q1r2 = q2σQr2. Thus

(i1, i2)σp′ke = (i2, i1)p′ke

= (p2s2, q1s1)ke

= (p2σP r1, q1σQr2)e

= (p1r1, q2r2)e

= (x, z).

Finally, let us consider a last pullback

Z
p //

g′

��

A

σp′ke
��

(x,z)

��
S

(q1s1,p2s2)

55
p′ // I

(i1,i2) // B2

where p is a regular epimorphism since p′ is. Let g = q2s1g
′. If i ∈ [n], then

fig = fiq2s1g
′

= fip1s2g
′

= fip2s2g
′

= fizp

whereas

fn+1g = fn+1q2s1g
′

= fn+1q1s1g
′

= fn+1xp.
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Therefore, p and g satisfy the desired properties.

For the next lemma, we need to introduce the notion of X-horns. We define here some
other related concepts which will be used in the next section.

Definition 3.10. Let A be a simplicial object in a category A. If n ∈ N, k ∈ [n] and

X ∈ ob A, a (n,k)-X-horn is the data of n maps X
xi // An−1 , i ∈ [n] \ {k}, such that

∂ixj = ∂j−1xi for all 0 6 i < j 6 n and i, j 6= k.

A filler for this (n, k)-X-horn is a map X
x // An such that ∂ix = xi for all

i ∈ [n] \ {k}.
We say that A is X-Kan if each X-horn has a filler.

Lemma 3.11. Let A be a simplicial object in a semi-abelian category A. If X
xi // An−1

is a (n, k)-X-horn, then there is a regular epimorphism Z
p // X and a map Z

g // An
satisfying ∂ig = xip for all i ∈ [n] \ {k}.

Proof. First of all, consider the case where n = 1. Here, we only have to consider the
pullback,

Z
p //

g

��

X

x1−k

��
A1

∂1−k

// A0

where p and g trivially satisfy the required conditions since pullbacks preserve regular
epimorphisms and ∂i are split epimorphisms.

Now, we can assume that n > 2. If k < n, let’s prove by downward induction on

r ∈ {k + 1, . . . , n}, that there exists a regular epimorphism Zr
pr // X and a map

Zr
gr // An such that ∂igr = xipr for all r 6 i 6 n.

For r = n, set pn = 1X and gn = σn−1xn. They satisfy the only desired condition since
∂nσn−1 = 1An−1 .

Suppose that pr+1 and gr+1 are constructed for n > r > k + 1 and let’s construct pr

and gr. We want to use our lemma 3.9 with the morphisms Zr+1

σr−1xrpr+1 //
σr−1∂rgr+1 //

gr+1

// An .

If i ∈ {r + 1, . . . , n}, we can compute, using the simplicial identities and the definition of
a X-horn,

∂iσr−1xrpr+1 = σr−1∂i−1xrpr+1

= σr−1∂rxipr+1

= σr−1∂r∂igr+1

= σr−1∂i−1∂rgr+1

= ∂iσr−1∂rgr+1

whereas,
∂rσr−1∂rgr+1 = ∂rgr+1.

So, by lemma 3.9, we have a regular epimorphism Zr
p′ // Zr+1 and a map Zr

gr // An
such that ∂igr = ∂igr+1p

′ for all i ∈ {r + 1, . . . , n} and ∂rgr = ∂rσr−1xrpr+1p
′. Setting

pr = pr+1p
′, we deduce ∂igr = xipr for all i ∈ {r, . . . , n}, which concludes the induction.
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3.2. Induced simplicial object and related results

If k = 0, we can set p = p1 and g = g1 and the proof is finished. So, now, we can assume
that 0 < k 6 n. We are going to extend the previous induction: let’s prove by (upward)

induction on r ∈ [k − 1] that there exists a regular epimorphism Zr
pr // X and a map

Zr
gr // An such that ∂igr = xipr for all 0 6 i 6 r and k+ 1 6 i 6 n. For r = 0, we have

to split the proof in two cases (k = n or k < n), because we have not proved anything yet
if k = n. So, if k = n, we can set p0 = 1X and g0 = σ0x0 which satisfy the only required

condition. Now, if k < n, we shall use our lemma 3.9 with Zk+1

σ0x0pk+1 //
σ0∂0gk+1

//
gk+1

// An .

If k + 1 6 i 6 n, we can compute,

∂iσ0x0pk+1 = σ0∂i−1x0pk+1

= σ0∂0xipk+1

= σ0∂0∂igk+1

= σ0∂i−1∂0gk+1

= ∂iσ0∂0gk+1

whereas,
∂0σ0∂0gk+1 = ∂0gk+1.

So, by lemma 3.9, there is a regular epimorphism Z0
p′′ // Zk+1 and a map Z0

g0 // An
such that ∂ig0 = ∂igk+1p

′′ for all k+ 1 6 i 6 n and ∂0g0 = ∂0σ0x0pk+1p
′′. Hence, if we set

p0 = pk+1p
′′, we have that ∂ig0 = xip0 for all k + 1 6 i 6 n and i = 0.

Now, suppose we have constructed pr−1 and gr−1 for 1 6 r 6 k − 1 and let’s prove

the existence of pr and gr. We shall use lemma 3.9 with Zr−1

σrxrpr−1 //
σr∂rgr−1 //
gr−1

// An . If

k + 1 6 i 6 n,

∂iσrxrpr−1 = σr∂i−1xrpr−1

= σr∂rxipr−1

= σr∂r∂igr−1

= σr∂i−1∂rgr−1

= ∂iσr∂rgr−1.

Similarly, if 0 6 i 6 r − 1,

∂iσrxrpr−1 = σr−1∂ixrpr−1

= σr−1∂r−1xipr−1

= σr−1∂r−1∂igr−1

= σr−1∂i∂rgr−1

= ∂iσr∂rgr−1

whereas,
∂rσr∂rgr−1 = ∂rgr−1.

Hence, again by lemma 3.9, there exists a regular epimorphism Zr
p′′′ // Zr−1 and a map

Zr
gr // An such that ∂igr = ∂igr−1p

′′′ for all 0 6 i 6 r − 1 and k + 1 6 i 6 n and
∂rgr = ∂rσrxrpr−1p

′′′. Thus, if we set pr = pr−1p
′′′, we have ∂igr = xipr for all 0 6 i 6 r

29
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and k + 1 6 i 6 n, which concludes the second induction. Finally, we get p and g by
setting p = pk−1 and g = gk−1.

As announced earlier, here is the key point in our proof, the construction of AI .

Proposition 3.12. Let A be a finitely complete category and A a simplicial object in A.
Let us write AI0 = A1 and let, for n ∈ N, AIn be the limit of

An+1

∂1

""

An+1

∂1

||

∂2

""

. . .

~~   

An+1

∂n

||
An An An

(3.5)

with pr1, . . . ,prn+1 ∈ A(AIn, An+1), the corresponding projections.

Moreover, we can define AIn
∂Ii // AIn−1 for n ∈ N and i ∈ [n] by

∂I0 = AI1
∂0pr2 // AI0 and ∂I1 = AI1

∂2pr1 // AI0

for n = 0, and for n > 0, ∂Ii will be the map induced by

prj∂
I
i =

 AIn
∂i+1prj // An if 1 6 j 6 i

AIn
∂iprj+1 // An if n > j > i.

Similarly, we can also define AIn
σI
i // AIn+1 for n ∈ N0 and i ∈ [n] to be the maps

induced by

pr1σ
I
0 = AI0

σ1 // A2 and pr2σ
I
0 = AI0

σ0 // A2

for n = 0, and for n > 0,

prjσ
I
i =

 AIn
σi+1prj // An+2 if 1 6 j 6 i+ 1

AIn
σiprj−1 // An+2 if n+ 2 > j > i+ 1.

These constructions make AI be a simplicial object in A.

Finally, we can define simplicial maps ε0(A), ε1(A) ∈ SA(AI ,A) and s(A) ∈ SA(A,AI)
by

ε0(A)0 = AI0
∂0 // A0 and ε0(A)n = AIn

∂0pr1 // An for n > 0,

ε1(A)0 = AI0
∂1 // A0 and ε1(A)n = AIn

∂n+1prn+1 // An for n > 0

and

s(A)0 = A0
σ0 // AI0 and prjs(A)n = σj−1 for 1 6 j 6 n+ 1 and n > 0.

These maps satisfy ε0(A)s(A) = ε1(A)s(A) = 1A.
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Proof. First of all, we have to check that ∂Ii is well defined for all n ∈ N, i.e. that
∂jprj∂

I
i = ∂jprj+1∂

I
i for all j ∈ {1, . . . , n− 1}. We also have to do it for σIi with n ∈ N0.

Then, we proof that AI is a simplicial object, i.e. that the simplicial identities (3.1),
(3.2) and (3.3) are satisfied by ∂Ii and σIi .

Afterwards, we have to check that s(A)n is well defined for all n ∈ N and that ε0(A),
ε1(A) and s(A) are simplicial maps, i.e. that they commute appropriately with the face
and degeneracy operators.

Finally, we have to check that ε0(A)ns(A)n = ε1(A)ns(A)n = 1An for all n ∈ N0.

To prove all these things, we only have to use the definitions of simplicial object, AIn
and the different maps used. This is very long, but there is not any difficulty, that is why
we omitted the details.

Now we are going to prove that, in a semi-abelian category, HnN(ε0(A)) is actually an
isomorphism. Recall that, by abuse of notation, we denote it by Hnε0(A) (see definition
3.5). Our sufficient condition for two semi-simplicial maps to have equal image under
HnN will trivially follow from this.

Proposition 3.13. Let A be a simplicial object in a semi-abelian category A. Consider
the map ε0(A) ∈ SA(AI ,A) from proposition 3.12. Then, Hnε0(A) is an isomorphism for
all n ∈ Z.

Proof. Since for n < 0 there is nothing to prove, we can assume n ∈ N0. Recall
that Znε0(A) is the morphism such that ker dn ◦ Znε0(A) = Nnε0(A) ◦ ker dIn. Thus
Znε0(A)d′In+1 = d′n+1Nn+1ε0(A) since they are equal when we compose them with the
monomorphism ker dn.

Nn+1AI
dIn+1 //

d′In+1 %%
Nn+1ε0(A)

��

NnAI
dIn //

Nnε0(A)

��

Nn−1AI

Nn−1ε0(A)

��

Ker dIn

ker dIn

::

Znε0(A)

��

Nn+1A
dn+1 //

d′n+1 %%

NnA
dn // Nn−1A

Ker dn
ker dn

::

Now, consider the following pullback with e the induced morphism.

Nn+1AI

e

%%

d′In+1

  

Nn+1ε0(A)

))
P0

p1 //

p2
��

Nn+1A

d′n+1

��
Ker dIn Znε0(A)

// Ker dn

We are going to prove that e is a regular epimorphism. Let p = ker(∂j)j∈[n] ◦ p1. So, by
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definition of the action of Nn+1 on arrows, the following diagram commute,

Nn+1AI
ker(∂Ij )

j∈[n] //

Nn+1ε0(A)

��

AIn+1

(∂Ij )
j∈[n] //

ε0(A)n+1

��

AI
n+1
n

ε0(A)n
��

Nn+1A
ker(∂j)j∈[n]

// An+1
(∂j)j∈[n]

// An+1
n

P0

p1

OO

p

==

where ε0(A)n is the unique map such that πi ◦ ε0(A)n = ε0(A)n ◦ πIi for all i ∈ [n]. Thus,
by definition of p, ∂ip = 0 for all i ∈ [n].

By lemma 3.7, we know that if n > 1, ker
(
∂Ij

)
j∈[n−1]

◦ ker dIn = ker
(
∂Ij

)
j∈[n]

. So, if

n > 1, let qk−1, for k ∈ {1, . . . , n+ 1}, be the following composite.

P0
p2 //

qk−1

55

Ker dIn
ker dIn //

ker(∂Ij )
j∈[n] ��

NnAI

ker(∂Ij )
j∈[n−1]

��
AIn

prk // An+1

By definition of AIn, we know that ∂kqk−1 = ∂kqk for all 1 6 k 6 n. Moreover, in view of
definition of ∂Ii , we can say that, for all 1 6 k 6 n+1 and i ∈ [n+1]\{k−1, k}, ∂iqk−1 = 0.
If n = 0, let q0 = p2 ∈ A(P,A1) since Ker dI0 = AI0 = A1. Let’s prove that ∂n+1p = ∂0q0.
If n = 0, ∂1p = ∂1(ker ∂0)p1 = d1p1 = d′1p1 = Z0ε0(A)p2 = N0ε0(A)p2 = ∂0p2. Otherwise,

∂n+1p = ∂n+1 ker(∂j)j∈[n]p1 = ker(∂j)j∈[n−1]dn+1p1

= ker(∂j)j∈[n−1] ker dnd
′
n+1p1 = ker(∂j)j∈[n−1] ker dnZnε0(A)p2

= ker(∂j)j∈[n−1]Nnε0(A) ker dInp2 = ε0(A)n ker(∂Ij )j∈[n−1] ker dInp2

= ∂0pr1 ker(∂Ij )j∈[n]p2 = ∂0q0.

Now, we are going to construct, by induction on r ∈ {1, . . . , n+2}, regular epimorphisms

Pr
yr // Pr−1 and maps Pr

hr−1 // An+2 satisfying ∂ihr−1 = 0 for i /∈ {r − 1, r, n + 2},
∂n+2hr−1 = qr−1y1 . . . yr if r 6 n + 1, ∂0h0 = py1 and ∂r−1hr−2yr = ∂r−1hr−1 if r > 2.
For r = 1, we define x0 = p, x2 = . . . xn+1 = 0 and xn+2 = q0. This is a (n+ 2, 1)-P0-horn
since ∂ip = 0 for all i ∈ [n], ∂n+1p = ∂0q0 and ∂iq0 = 0 for all 2 6 i 6 n + 1. So, by

lemma 3.11, there is a regular epimorphism P1
y1 // P0 and a map P1

h0 // An+2 such
that ∂0h0 = py1, ∂ih0 = 0 for all 2 6 i 6 n+ 1 and ∂n+2h0 = q0y1.

Suppose that n > 1 and yr and hr−1 has been constructed for 1 6 r 6 n and
let’s prove the existence of yr+1 and hr. Let x0 = · · · = xr−1 = 0, xr = ∂rhr−1,
xr+2 = · · · = xn+1 = 0 and xn+2 = qry1 . . . yr. We know that ∂j−1∂rhr−1 = ∂r∂jhr−1 = 0
for all j ∈ {r+2, . . . , n+1} and ∂rqry1 . . . yr = ∂rqr−1y1 . . . yr = ∂r∂n+2hr−1 = ∂n+1∂rhr−1.
Moreover, if i < r − 1, ∂i∂rhr−1 = ∂r−1∂ihr−1 = 0, whereas, if i = r − 1:

∂r−1∂rhr−1 = ∂r−1∂r−1hr−1 = ∂r−1∂r−1hr−2yr = ∂r−1∂rhr−2yr = 0 if r > 1

and
∂0∂1h0 = ∂0∂0h0 = ∂0py1 = 0 if r = 1.
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Finally, ∂iqry1 . . . yr = 0 if i /∈ {r, r+ 1, n+ 2}. Therefore, the xi’s form a (n+ 2, r+ 1)-Pr-

horn. So, by lemma 3.11, there exists a regular epimorphism Pr+1
yr+1 // Pr and a map

Pr+1
hr // An+2 such that ∂ihr = 0 for all i /∈ {r, r + 1, n + 2}, ∂rhr = ∂rhr−1yr+1 and

∂n+2hr = qry1 . . . yryr+1.
It remains to complete the last part of the induction. So, suppose all the yr’s and

hr−1’s are constructed but yn+2 and hn+1 and let’s prove their existence. We define
x0 = · · · = xn = 0 and xn+1 = ∂n+1hn. We know that ∂i∂n+1hn = ∂n∂ihn = 0 if i < n,
whereas, if i = n,

∂n∂n+1hn = ∂n∂nhn = ∂n∂nhn−1yn+1 = ∂n∂n+1hn−1yn+1 = 0 if n > 0

and ∂0∂0h0 = ∂0py1 = 0 if n = 0. So the xi’s form a (n + 2, n + 2)-Pn+1-horn.

Hence, by lemma 3.11, there exists a regular epimorphism Pn+2
yn+2 // Pn+1 and a map

Pn+2
hn+1 // An+2 such that ∂ihn+1 = 0 for all i ∈ [n] and ∂n+1hn+1 = ∂n+1hnyn+2, which

concludes the induction.
The map h′ = (h0y2 . . . yn+2, . . . , hnyn+2, hn+1) ∈ A(Pn+2, A

I
n+1) is well defined, since

∂ihi−1yi+1 = ∂ihi if 1 6 i 6 n + 1. We would like to show
(
∂Ij

)
j∈[n]

h′ = 0. If n = 0,

we have ∂I0h
′ = ∂0h1 = 0. For n > 0, it is enough to show that for all i ∈ [n] and

j ∈ {1, . . . , n + 1}, we have prj∂
I
i h
′ = 0. If j 6 i, prj∂

I
i h
′ = ∂i+1prjh

′ =

∂i+1hj−1yj+1 . . . yn+2 = 0. If i < j < n + 1, prj∂
I
i h
′ = ∂iprj+1h

′ = ∂ihjyj+2 . . . yn+2 = 0,

whereas, if j = n + 1, prn+1∂
I
i h
′ = ∂iprn+2h

′ = ∂ihn+1 = 0. Therefore, there is a map

Pn+2
h // Nn+1AI such that ker

(
∂Ij

)
j∈[n]

◦ h = h′.

Now, we would like to show that eh = y1 . . . yn+2. To do so, we have to prove that
p1eh = p1y1 . . . yn+2 and p2eh = p2y1 . . . yn+2. For the first equality, we have to show
Nn+1ε0(A)h = p1y1 . . . yn+2, which is a consequence of

ker(∂j)j∈[n]Nn+1ε0(A)h = ε0(A)n+1 ker
(
∂Ij
)
j∈[n]

h

= ε0(A)n+1h
′

= ∂0h0y2 . . . yn+2

= py1 . . . yn+2

= ker(∂j)j∈[n]p1y1 . . . yn+2.

For the second one, we have to prove d′In+1h = p2y1 . . . yn+2, or dIn+1h = ker dInp2y1 . . . yn+2.
If n = 0, we have dI1h = ∂I1 ker(∂I0)h = ∂2pr1h

′ = ∂2h0y2 = q0y1y2 = p2y1y2. Otherwise,

it is enough to prove ker
(
∂Ij

)
j∈[n−1]

dIn+1h = ker
(
∂Ij

)
j∈[n]

p2y1 . . . yn+2. Let’s prove that

their projections on An+1 are equal. So, if k ∈ {1, . . . n+ 1}, we have

prk ker
(
∂Ij
)
j∈[n−1]

dIn+1h = prk∂
I
n+1 ker

(
∂Ij
)
j∈[n]

h

= ∂n+2prkh
′

= ∂n+2hk−1yk+1 . . . yn+2

= qk−1y1 . . . yn+2

= prk ker
(
∂Ij
)
j∈[n]

p2y1 . . . yn+2.

Therefore eh = y1 . . . yn+2 and because the yi’s are regular epimorphisms, by corollary
2.23, e is a regular epimorphism.
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Now, consider the following diagram

KerNn+1ε0(A)
kerNn+1ε0(A) //

k3

��

k1

''

Nn+1AI
Nn+1ε0(A) //

d′In+1

��

e

##

Nn+1A

d′n+1

��

Ker p1
ker p1

//

k2ww

P0 p1
//

p2{{

Nn+1A

d′n+1yy
KerZnε0(A)

kerZnε0(A)
// Ker dIn Znε0(A)

// Ker dn

where k1, k2 and k3 are the induced morphisms. Notice that k2k1 = k3 since their
composite with kerZnε0(A) are equal. We also know that ε0(A) is a split epimorphism, so
Nn+1ε0(A), Znε0(A) and p1 are regular epimorphisms. Thus, by a well-known result about
kernel and pullbacks (see lemma 4.2.4 in [4]), k2 is an isomorphism. Moreover, again by
lemma 4.2.4 in [4], the up-left-hand square is a pullback. So, k1, and therefore k3, is a
regular epimorphism.

Let’s prove that

Nn+1AI
Nn+1ε0(A) //

d′In+1

��

Nn+1A

d′n+1

��
Ker dIn Znε0(A)

// Ker dn

is a pushout. Suppose we have two arrows Nn+1A
f1 // B and Ker dIn

f2 // B such that

f1Nn+1ε0(A) = f2d
′I
n+1. So, because f2 kerZnε0(A)k3 = f1Nn+1ε0(A) kerNn+1ε0(A) = 0,

we know that f2 kerZnε0(A) = 0. But Znε0(A) is a normal epimorphism, so Znε0(A) =

coker(kerZnε0(A)). Consequently, there is a unique morphism Ker dn
g // B such that

gZnε0(A) = f2. This map also satisfies gd′n+1 = f1 since their composite with Nn+1ε0(A)
are equal. Therefore, we have proved that the left-hand square is a pushout.

Nn+1AI
d′In+1 //

Nn+1ε0(A)

��

Ker dIn

Znε0(A)

��

coker d′In+1 // HnAI

Hnε0(A)

��
Nn+1A

d′n+1

// Ker dn
coker d′n+1

// HnA

Therefore, by the dual of lemma 4.2.4 in [4], Hnε0(A) is an isomorphism.

Finally, we have our main result of this section as an immediate corollary of the previous
proposition. Recall that, by abuse of notation, the functor Hn means here HnN .

Corollary 3.14. Let A and B be two simplicial objects in a semi-abelian category A,

with A f,g // B two semi-simplicial maps. If there is a semi-simplicial map A h // BI
such that f = ε0(B)h and g = ε1(B)h, then Hnf = Hng for all n ∈ Z.
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Proof. By proposition 3.12, we know that the following diagram commutes.

B

A h //

f
00

g ..

BI

ε0(B)

??

ε1(B)
��

B
s(B)oo

B

Moreover, by proposition 3.13, Hnε0(B)−1 = Hns(B) = Hnε1(B)−1. Therefore,
Hnf = Hnε0(B)Hnh = Hnε1(B)Hnh = Hng.

3.3 Comparison theorem

A natural question that one can wonder about augmented simplicial objects is the follow-

ing: Given two augmented simplicial objects A and B and a map A−1
f−1 // B−1 , can we

extend it to a augmented simplicial map from A to B? Is such an extension unique? The
aim of this section is to give a sufficient condition for the existence of a semi-simplicial
extension. Moreover, we shall prove that if this condition is satisfied, two such extensions
have the same image under Hn, using corollary 3.14. To find this condition, we have to
introduce the concept of a projective class.

Definition 3.15. Let C be a category, P ∈ ob C and e ∈ C(A,B). We say that P is

e-projective and e is P-epic if for any morphism P
f // B , there exists a map

P
g // A such that eg = f .

P

∀f
��

∃g

��
A e

// B

If P is a class of object of C, a morphism e is called P-epic if it is P -epic for all P ∈ P.
The class of morphisms which are P-epic is denoted by P-epi. Similarly, if E is a class of
morphism of C, a object P is called E-projective if it is e-projective for all e ∈ E . The
class of objects which are E-projective is denoted by E-proj.

We say that C has enough E-projectives if for all Z ∈ ob C, there exists P ∈ E-proj
and a morphism P // Z in E .

Let P be a class of object of C and E be a class of morphisms of C. We say that (P, E) is
a projective class on C if P = E-proj, E = P-epi and C has enough E-projectives. Notice
that P and E determine each-other, so, by abuse of notation, we can call this projective
class P or E .

Remark 3.16. For a class P ⊂ ob C and a class E ⊂ mor C, we always have
P ⊂ (P-epi)-proj and E ⊂ (E-proj)-epi. Moreover, the pair ((P-epi)-proj,P-epi) (re-
spectively (E-proj, (E-proj)-epi)) is a projective class provided the fact that C has enough
P-epi-projectives (respectively (E-proj)-epi-projectives). In that case, we call it the pro-
jective class generated by P (respectively E).

Some definitions we have made for simplicial objects can be adapted to be relative to a
projective class P.
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Definition 3.17. Let P be a projective class on a category C and A be an augmented
simplicial object in C. We say that A is P-left-contractible if for each P ∈ P, there exist

mappings of classes C(P,An)
hn // C(P,An+1) for each n > −1 such that ∂0◦hn(f) = f for

all f ∈ C(P,An) and ∂i ◦hn(f) = hn−1(∂i−1 ◦f) for all f ∈ C(P,An) and i ∈ {1, . . . , n+1}.

Remark 3.18. Of course, we can notice similarities with the definition of left-contractible
augmented simplicial objects (see definition 3.2). Actually, if C is locally small, A is P-
left-contractible if, for each P ∈ P, the simplicial object C(P,A) in Set is left-contractible.
The face and degeneracy operators of this simplicial object are defined obviously, i.e.

C(P,An)
∂′i=∂i◦− // C(P,An−1) and C(P,An)

σ′i=σi◦− // C(P,An+1) .

Definition 3.19. Let P be a projective class on a category C and A be a simplicial object
in C. We say that A is P-Kan if it is P -Kan for all P ∈ P.

The class P is a Kan projective class on C if every P-left-contractible augmented
simplicial object is P-Kan.

Before proving the main theorem of this section, we are going to show a lemma which
will be used several times in the proof of this theorem.

Lemma 3.20. Let P be a projective class on a category C and A a P-Kan P-left-
contractible augmented simplicial object in C. Given P ∈ P, n ∈ N0 and n + 1 maps

P
xi // An−1 , i ∈ [n], such that ∂ixj = ∂j−1xi for all 0 6 i < j 6 n, then there exists a

morphism P
x // An such that ∂ix = xi for all i ∈ [n].

Proof. Let C(P,Am)
hm // C(P,Am+1) , m > −1, be the mappings given by definition of

P-left-contractible for P . Define also, for i ∈ {1, . . . , n+ 1}, P
yi=hn−1(xi−1) // An . By

assumptions, we have (if n > 0), for all 1 6 i < j 6 n+ 1,

∂iyj = ∂ihn−1(xj−1)

= hn−2(∂i−1xj−1)

= hn−2(∂j−2xi−1)

= ∂j−1hn−1(xi−1)

= ∂j−1yi.

Thus, the yi’s form a (n+1, 0)-P -horn, even if n = 0 since there is nothing to check in that

case. But A is P -Kan, so we have a filler P
y // An+1 for this horn. So, by definition

of a filler, if we set x = ∂0y, we have

∂ix = ∂i∂0y

= ∂0∂i+1y

= ∂0yi+1

= ∂0hn−1(xi)

= xi

for all i ∈ [n].
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Notice that if we have an (augmented) simplicial object A in a category C and a functor
E : C → A, then E(A) is an (augmented) simplicial object in A by setting E(A)n = E(An),
∂′i = E(∂i) and σ′i = E(σi). This turns E into functors E : S C → SA, S′ C → S′A,
AS C → ASA or AS′ C → AS′A.

Now, we are able to prove a theorem to extend morphisms P−1
// A−1 to augmented

semi-simplicial maps P // A . Note that we do not need the fact that P−1 ∈ P.

Theorem 3.21 (Comparison Theorem). Let P be a projective class on a category C. Let
also A and P be two augmented simplicial objects in C such that Pn ∈ P for all n ∈ N0

and A is P-Kan and P-left-contractible. Then, each morphism P−1
f−1 // A−1 can be

extended to a augmented semi-simplicial map P f // A . Moreover, if E : C → A is a
functor to a semi-abelian category A and g another extension, then HnEf = HnEg for
all n ∈ Z.

Proof. For the first part of the proof, we are going to construct the fn’s by induction. Since
f−1 is already defined, let us suppose that all the fk’s are constructed for −1 6 k 6 n− 1,
n ∈ N0, and that they commute appropriately with the face operators. Now, we are going
to construct fn. Set xi = fn−1∂i for i ∈ [n]. We want to use lemma 3.20. If n = 0, there
is nothing to check. If n > 0, we can compute, for 0 6 i < j 6 n,

∂ixj = ∂ifn−1∂j

= fn−2∂i∂j

= fn−2∂j−1∂i

= ∂j−1fn−1∂i

= ∂j−1xi.

So, lemma 3.20 gives us the expected fn.

Pn

fn
��

//////// Pn−1
//////

fn−1

��

Pn−2

fn−2

��

. . . P0
//

f0
��

P−1

f−1

��
An

// ////// An−1
////// An−2 . . . A0

// A−1

For the second part of the proof, by lemma 3.14, we have to construct a semi-simplicial

map E(P)
h // E(A)I such that ε0(E(A))h = E(f) and ε1(E(A))h = E(g). To do so,

let’s construct, by induction on n, morphisms Pn
hni // An+1 for n ∈ N0 and i ∈ [n] such

that ∂0h
n
0 = fn, ∂n+1h

n
n = gn and

∂ih
n
j =


hn−1
j−1 ∂i if 0 6 i < j 6 n

∂ih
n
i−1 if 0 < i = j 6 n

hn−1
j ∂i−1 if 0 < j + 1 < i 6 n+ 1.

If n = 0, we know that ∂0g0 = f−1∂0 = ∂0f0. Thus, lemma 3.20 gives us P0
h00 // A1

such that ∂0h
0
0 = f0 and ∂1h

0
0 = g0.

Now, suppose all the hri ’s have been constructed for 0 6 r 6 n − 1, n > 1 and that
they commute as expected with the ∂i’s. We are going to construct the hni ’s. To do it, we
construct hni by induction on i ∈ [n] in such a way that it satisfies all the desired equalities
where, of course, only already defined maps appear.
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For i = 0, let x0 = fn and xi = hn−1
0 ∂i−1 for 1 < i 6 n + 1. Let’s check that this is

a (n + 1, 1)-Pn-horn. If 1 < j 6 n + 1, ∂0h
n−1
0 ∂j−1 = fn−1∂j−1 = ∂j−1fn. Whereas, if

1 < i < j 6 n + 1, ∂ih
n−1
0 ∂j−1 = hn−2

0 ∂i−1∂j−1 = hn−2
0 ∂j−2∂i−1 = ∂j−1h

n−1
0 ∂i−1. Thus,

since A is Pn-Kan, we have a filler Pn
hn0 // An+1 for this horn. This satisfies ∂0h

n
0 = fn

and ∂ih
n
0 = hn−1

0 ∂i−1 for 2 6 i 6 n + 1. These are all the equalities involving hn0 which
are already defined.

Now, suppose that n > 2 and that the hni ’s have been defined for 0 6 i 6 l − 1 where
1 6 l 6 n − 1 and let us construct hnl (we shall construct hnn for n > 1 afterwards). Set
yi = hn−1

l−1 ∂i for 0 6 i < l, yl = ∂lh
n
l−1 and yi = hn−1

l ∂i−1 for l + 1 < i 6 n+ 1. Let check
that defines a (n+ 1, l + 1)-Pn-horn.

If 0 6 i < j < l: ∂ih
n−1
l−1 ∂j = hn−2

l−2 ∂i∂j = hn−2
l−2 ∂j−1∂i = ∂j−1h

n−1
l−1 ∂i.

If 0 6 i < l − 1 < j = l: ∂i∂lh
n
l−1 = ∂l−1∂ih

n
l−1 = ∂l−1h

n−1
l−2 ∂i = ∂l−1h

n−1
l−1 ∂i.

If i = l − 1, j = l and l > 1:

∂l−1∂lh
n
l−1 = ∂l−1∂l−1h

n
l−1

= ∂l−1∂l−1h
n
l−2

= ∂l−1∂lh
n
l−2

= ∂l−1h
n−1
l−2 ∂l−1

= ∂l−1h
n−1
l−1 ∂l−1.

If l = 1, i = 0 and j = 1: ∂0∂1h
n
0 = ∂0∂0h

n
0 = ∂0fn = fn−1∂0 = ∂0h

n−1
0 ∂0.

If 0 6 i < l and l + 1 < j 6 n+ 1:

∂ih
n−1
l ∂j−1 = hn−2

l−1 ∂i∂j−1 = hn−2
l−1 ∂j−2∂i = ∂j−1h

n−1
l−1 ∂i.

If i = l and l + 1 < j 6 n+ 1: ∂lh
n−1
l ∂j−1 = ∂lh

n−1
l−1 ∂j−1 = ∂l∂jh

n
l−1 = ∂j−1∂lh

n
l−1.

If l + 1 < i < j 6 n + 1: ∂ih
n−1
l ∂j−1 = hn−2

l ∂i−1∂j−1 = hn−2
l ∂j−2∂i−1 = ∂j−1h

n−1
l ∂i−1.

Therefore, since A is Pn-Kan, we have a filler Pn
hnl // An+1 for this Pn-horn. It satisfies

∂ih
n
l = hn−1

l−1 ∂i for 0 6 i < l, ∂lh
n
l = ∂lh

n
l−1 and ∂ih

n
l = hn−1

l ∂i−1 for l + 1 < i 6 n + 1.
These are the only equalities involving hnl which are already defined.

To concludes the induction, it remains to construct hnn. Let zi = hn−1
n−1∂i for i ∈ [n− 1],

zn = ∂nh
n
n−1 and zn+1 = gn. We want to use lemma 3.20. So, let us check the hypothesis:

If 0 6 i < j < n: ∂ih
n−1
n−1∂j = hn−2

n−2∂i∂j = hn−2
n−2∂j−1∂i = ∂j−1h

n−1
n−1∂i.

If 0 6 i < n− 1 < j = n: ∂i∂nh
n
n−1 = ∂n−1∂ih

n
n−1 = ∂n−1h

n−1
n−2∂i = ∂n−1h

n−1
n−1∂i.

If i = n− 1, j = n and n > 1:

∂n−1∂nh
n
n−1 = ∂n−1∂n−1h

n
n−1

= ∂n−1∂n−1h
n
n−2

= ∂n−1∂nh
n
n−2

= ∂n−1h
n−1
n−2∂n−1

= ∂n−1h
n−1
n−1∂n−1.

If n = 1, i = 0 and j = 1: ∂0∂1h
1
0 = ∂0f1 = f0∂0 = ∂0h

0
0∂0.

If 0 6 i < n < j = n+ 1: ∂ign = gn−1∂i = ∂nh
n−1
n−1∂i.

If i = n and j = n + 1: ∂ngn = gn−1∂n = ∂nh
n−1
n−1∂n = ∂n∂n+1h

n
n−1 = ∂n∂nh

n
n−1.

Therefore, by lemma 3.20, there exists a map Pn
hnn // An+1 such that ∂ih

n
n = hn−1

n−1∂i
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for 0 6 i < n, ∂nh
n
n = ∂nh

n
n−1 and ∂n+1h

n
n = gn which are the desired equalities. So the

induction is completed.

Now we are going to construct E(P)
h // E(A)I . Let h0 = E(h0

0) ∈ C(E(P0), E(A)I0)

and for n > 1, E(Pn)
hn // E(A)In is the morphism defined by prihn = E(hni−1) for each

i ∈ {1, . . . , n + 1}. Note that this morphism is well-defined since for all i ∈ {1, . . . , n},
E(∂i)E(hni−1) = E(∂i)E(hni ). Let’s check that h is a semi-simplicial map: first, notice that
∂I0h1 = E(∂0)E(h1

1) = E(h0
0)E(∂0) = h0E(∂0) and ∂I1h1 = E(∂2)E(h1

0) = E(h0
0)E(∂1) =

h0E(∂1). Then, we have to prove that ∂Ii hn+1 = hnE(∂i) for n > 1 and i ∈ [n+ 1]. To do
so, it is enough to remark that

prj∂
I
i hn+1 = E(∂i+1)prjhn+1 = E(∂i+1)E(hn+1

j−1 ) = E(hnj−1)E(∂i) = prjhnE(∂i)

for all 1 6 j 6 i and that

prj∂
I
i hn+1 = E(∂i)prj+1hn+1 = E(∂i)E(hn+1

j ) = E(hnj−1)E(∂i) = prjhnE(∂i)

for all i < j 6 n+ 1. It remains to show that ε0(E(A))h = E(f) and ε1(E(A))h = E(g).
But it follows from definition: ε0(E(A))nhn = E(∂0)E(hn0 ) = E(fn) and ε1(E(A))nhn =
E(∂n+1)E(hnn) = E(gn) for all n ∈ N0.
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4 Comonadic Homology

In chapter 3, we studied simplicial objects. In this chapter, we are going to consider
particular simplicial objects, the ones arising from a comonad. If we ‘push’ such simplicial
objects forwards into a semi-abelian category with a functor, they induce a homology
called comonadic homology. This is a functor from the initial category D to the semi-
abelian one, A. It can also be viewed as a functor from [D,A] to [D,A]. However, in
section 4.2, we shall focus on a necessary condition for two comonads to induce the same
homology. Fortunately, all the hard part of the work has been accomplished in chapter 3,
with the Comparison Theorem. The last section gives some examples of such homologies.

4.1 Comonads

Comonads are the duals of monads. They can be viewed as the information we get from
an adjunction F a H where F : C → D and H : D → C without mentioning what happens
on C. In this section, we are constructing a simplicial object from a comonad.

Definition 4.1. A comonad G = (G, ε, δ) in a categoryD consists of a functorG : D → D
and two natural transformations ε : G→ 1D and δ : G→ G2 making the diagrams

G
δ //

1G   

G2

Gε
��
G

(4.1)

G
δ //

1G   

G2

εG
��
G

(4.2)

G
δ //

δ
��

G2

δG
��

G2
Gδ
// G3

(4.3)

commute. We call ε the counit, while δ is the comultiplication. Diagrams (4.1) and
(4.2) are called the counit laws, whereas (4.3) is the coassociativity law.

Example 4.2. Let F a H be an adjunction where F : C → D and H : D → C. Let
η : 1C → HF and ε : FH → 1D be respectively the unit and counit of the adjunction. If
we set G = FH and δ = FηH : G→ G2, then G = (G, ε, δ) is a comonad of D. Indeed, the
counit laws follows from triangular identities and the coassociativity law from naturality
of η.

The following lemma encompasses all the simplicial identities we have to prove in order
to construct a simplicial object.
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4. Comonadic Homology

Lemma 4.3. If we have a comonad G in D and an object A ∈ ob D, for all n ∈ N0, we
have the following identities:

GiεGn−iA ◦GjεGn+1−jA = Gj−1εGn−j+1A ◦GiεGn−i+1A ∀ 0 6 i < j 6 n+ 1, (4.4)

GiδGn+1−iA ◦GjδGn−jA = Gj+1δGn−jA ◦GiδGn−iA ∀ 0 6 i 6 j 6 n, (4.5)

GiεGn+1−iA ◦GjδGn−jA = Gj−1δGn−jA ◦GiεGn−iA ∀ 0 6 i < j 6 n, (4.6)

GiεGn+1−iA ◦GjδGn−jA = 1Gn+1A ∀ 0 6 i = j 6 n and ∀ 1 6 i = j + 1 6 n, (4.7)

GiεGn+1−iA ◦GjδGn−jA = GjδGn−j−1A ◦Gi−1εGn−i+1A ∀ 1 6 j + 1 < i 6 n. (4.8)

Proof. Let’s prove the first identity:

GiεGn−iA ◦GjεGn+1−jA = Gi(εGn−iA ◦Gj−iεGn+1−jA)

= Gi(Gj−1−iεGn−j+1A ◦ εGn−i+1A)

= Gj−1εGn−j+1A ◦GiεGn−i+1A

where we used the naturality of ε.
For the second one, we also do a direct computation:

GiδGn+1−iA ◦GjδGn−jA = Gi(δGn+1−iA ◦Gj−iδGn−jA)

= Gi(Gj+1−iδGn−jA ◦ δGn−iA)

= Gj+1δGn−jA ◦GiδGn−iA

where we used the naturality of δ if i < j or the coassociativity law (4.3) if i = j.
For the third identity, we use again the naturality of ε:

GiεGn+1−iA ◦GjδGn−jA = Gi(εGn+1−iA ◦Gj−iδGn−jA)

= Gi(Gj−i−1δGn−jA ◦ εGn−iA)

= Gj−1δGn−jA ◦GiεGn−iA.

To prove (4.7) when i = j we use the second counit law (4.2)

GiεGn+1−iA ◦GiδGn−iA = Gi(εGn+1−iA ◦ δGn−iA) = Gi(1Gn−i+1A) = 1Gn+1A,

while we use the first counit law (4.1) if i = j + 1

Gj+1εGn−jA ◦GjδGn−jA = Gj(GεGn−jA ◦ δGn−jA) = Gj(1Gn−j+1A) = 1Gn+1A.

Finally, we prove the last identity using the naturality of δ:

GiεGn+1−iA ◦GjδGn−jA = Gj(Gi−jεGn+1−iA ◦ δGn−jA)

= Gj(δGn−j−1A ◦Gi−1−jεGn−i+1A)

= GjδGn−j−1A ◦Gi−1εGn−i+1A.

Due to this lemma, G induces an augmented simplicial object in D.

Definition 4.4. Let G be a comonad in D and A ∈ ob D. If we write, for all n ∈ N0 and

i ∈ [n], ∂i for the map Gn+1A
GiεGn−iA // GnA , σi for Gn+1A

GiδGn−iA // Gn+2A and
An = Gn+1A for all n > −1, then (An)n>−1 is an augmented simplicial object in D. We
denote it by GA.

· · ·
//////// G

3A
////// G

2A //// GA // A
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4.2. Comonadic homology

Moreover, if f ∈ D(A,B), we have an induced morphism G(f) ∈ ASD(GA,GB) by
setting (G(f))n = Gn+1f for all n > −1. This is a well-defined morphism in the category
ASD since (G(f))n−1 ◦ ∂i = ∂′i ◦ (G(f))n and (G(f))n ◦ σi = σ′i ◦ (G(f))n−1 by naturality
of ε and δ. This makes G into a functor G : D → ASD.

If D is semi-abelian, we can define the homology sequence of the Moore complex of GA.
This is what we are going to do in the next section.

4.2 Comonadic homology

Recall that if we have a functor E : D → A, it can be turned into a functor E : SD → SA
in the obvious way. This is how GA can induce a simplicial object (and so a homology)
in a semi-abelian category. The main result of this section, and of this essay, says that,
provided some condition on two comonads G and K holds, GA and KA induce the same
homology.

Definition 4.5. Let A,D be two categories with A semi-abelian. Let also G = (G, ε, δ)
be a comonad in D, A be an object in D and E : D → A be a functor. For all n ∈ Z,

Hn(A,E)G = Hn−1NEGA (4.9)

is called the nth homology object of A (with coefficients in E) relative to the
comonad G. This induces a functor Hn(−, E)G : D → A. Moreover, if E,E′ : D → A
are two functors and α : E → E′ is a natural transformation, we can define another natural
transformation Hn(−, α)G := β : Hn(−, E)G → Hn(−, E′)G by setting βA as the image by
Hn−1N of the augmented simplicial map

· · ·
// ////// EG

3A

αG3A
��

////// EG
2A

αG2A
��

//// EGA

αGA

��

// EA

αA

��
· · ·

// ////// E
′G3A

////// E
′G2A //// E′GA // E′A

This makes Hn(−, )G be a functor [D,A]→ [D,A].

Actually, we can already compute this homology for some particular objects of D.

Proposition 4.6. Let A,D be two categories with A semi-abelian, G a comonad in D,
E : D → A a functor and A ∈ ob D. Then,

Hn(GA,E)G =

{
EGA if n = 1

0 if n 6= 1.

Proof. A = EGGA is an augmented simplicial object inA. It is actually right-contractible.

Indeed, we can define An = EGn+2A
hn=EGn+1δA // EGn+3A = An+1 for all n > −1

which satisfies
∂n+1hn = EGn+1εGA ◦ EGn+1δA = 1EGn+2A = 1An

for all n > −1 by the counit law (4.2) and

∂ihn = EGiεGn+2−iA ◦ EGn+1δA = EGnδA ◦ EGiεGn+1−iA = hn−1∂i

for all n > 0 and i ∈ [n] by naturality of ε. The result follows from proposition 3.8. Recall
the dimension shift, i.e. Hn(GA,E)G = Hn−1NEGGA.
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4. Comonadic Homology

A natural question that one can wonder about comonadic homology, is to know if two
different comonads can give rise to the same homology. We are going to give a sufficient
condition on these comonads to have the same homology. To do so, we need to introduce
the projective class generated by a comonad (see definition 3.15 and remark 3.16).

Definition 4.7. Let G be a comonad in the category D. The projective class gener-
ated by G is the projective class generated by the class {GA | A ∈ ob D}. We denote it
by (PG, EG).

Remark 4.8. To see that this is really a projective class, we have to check that D has

enough EG projectives. Let A ∈ ob D. We know that GA ∈ PG. Moreover, GA
εA // A is

in EG since, if we have GB
f // A , it equals GB

Gf◦δB // GA
εA // A , by naturality

of ε and (4.2). Therefore D has enough EG projectives.

There is a better description of PG.

Lemma 4.9. Let G be a comonad in D. Then,

PG = {P ∈ ob D | ∃s ∈ D(P,GP ) such that εP s = 1P }.

Proof. Let P ∈ PG. Since, GP
εP // P is in EG, 1P factors through it which gives

s ∈ D(P,GP ).

Conversely, suppose P ∈ ob D and P
s // GP are such that εP s = 1P . Then, if

A
e // B is in EG, we have to prove that P is e-projective. That is, given P

f // B ,
we have to show that f factors through e. But since e is in EG, there exists h ∈ D(GP,A)
such that eh = fεP . Thus, ehs = fεP s = f and f factors through e.

Now we have everything we need to prove the main theorem of this essay.

Theorem 4.10. Let G and K be two comonads on a category D such that PG = PK and
this is a Kan projective class on D. If A is a semi-abelian category and E : D → A a
functor, then Hn(−, E)G and Hn(−, E)K are naturally isomorphic for all n ∈ Z.

Proof. Set P = PG = PK and fix A ∈ ob D. First, let’s prove that GA is PG-left-
contractible. Let P ∈ PG and s ∈ D(P,GP ) given by lemma 4.9. For all n > −1,

define the mapping hn : C(P,Gn+1A) // C(P,Gn+2A) : f 7→ Gf ◦ s. It satisfies the

required condition since ∂0Gfs = εGn+1AGfs = fεP s = f and ∂iGfs = GiεGn+1−iAGfs =
G(Gi−1εGn+1−iAf)s = G(∂i−1f)s for all i ∈ {1, . . . , n + 1}. Therefore GA is P-left-
contractible and also P-Kan since P is a Kan projective class by assumption. Similarly,
KA is P-Kan and P-left-contractible.

But, by definition of P, GB,KB ∈ P for all B ∈ ob D, so we can use the Com-

parison Theorem 3.21 to get two augmented semi-simplicial maps GA fA // KA and

KA gA // GA such that fA−1 = gA−1 = 1A.

. . . Gn+2A

fAn+1

��

//////// G
n+1A

//////

fAn
��

GnA

fAn−1

��

. . . GA //

fA0
��

A

1A
��

. . . Kn+2A

gAn+1

��

//////// K
n+1A

//////

gAn
��

KnA

gAn−1

��

. . . KA //

gA0
��

A

1A
��

. . . Gn+2A
//////// G

n+1A
////// GnA . . . GA // A
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4.3. Examples

Moreover, by the second part of the Comparison Theorem 3.21, we know that

HnNE(gAfA) = HnNE(1GA) = 1HnNEGA

and
HnNE(fAgA) = HnNE(1KA) = 1HnNEKA.

Therefore
Hn+1(A,E)G ∼= Hn+1(A,E)K.

It remains to show that this isomorphism is natural in A. If we have A
h // B in

D, we can consider the two augmented semi-simplicial maps GA fA // KA Kh // KB and

GA Gh // GB fB // KB . They satisfy (Kh◦fA)−1 = h = (fB◦Gh)−1. Thus, by the Com-
parison Theorem 3.21, HnNE(Kh ◦ fA) = HnNE(fB ◦Gh), which proves the naturality
of the isomorphism HnNE(fA).

Hn+1(A,E)G
HnNEGh //

HnNE(fA)

��

Hn+1(B,E)G

HnNE(fB)

��
Hn+1(A,E)K

HnNEKh
// Hn+1(B,E)K

4.3 Examples

The aim of this section is to exhibit some examples of comonadic homologies. Some of
them are well-known homology theories. Of course, the following list is not exhaustive.
For ‘brevity’ of this essay, the results of this section are left unproved. Let’s start with
the trivial example.

Example 4.11 (Trivial). If G = (1D, 1, 1), by proposition 4.6 or by direct computations,
we have

Hn(A,E)G =

{
EA if n = 1

0 if n 6= 1.

The next one is a well-know homology in Commutative Algebra.

Example 4.12 (Tor). Let R be a unitary commutative ring, D = R-Mod and G be the
comonad induced by the forgetful/free adjunction (where C = Set). If A = R-Mod and
E : R-Mod→ R-Mod is the functor given by −⊗R N for a fixed R-module N , then, one
can prove (see [5]) that

Hn(M,−⊗R N)G = TorRn−1(M,N).

Due to proposition 4.6, we have another proof of

TorRn (R⊕M , N) =

{
R⊕M ⊗R N if n = 0

0 if n > 0.
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4. Comonadic Homology

Now, we give an example from Algebraic Topology.

Example 4.13 (Singular Homology). Let’s construct a comonad in the category D = Top.
We denote by ∆p the p-dimensional simplex. Let G be the functor

G : Top→ Top : X →
⊔

∆p→X
p>0

∆p

where the disjoint union is over all continuous map ∆p → X. The action of G on arrows
is given by the following: if g : X → Y is a continuous function, then

Gg : x ∈ (∆p)f 7→ x ∈ (∆p)gf .

The counit is the natural transformation

εX : GX → X : x ∈ (∆p)f 7−→ f(x)

while the comultiplication is given by

δX : GX → G2X : x ∈ (∆p)f 7−→ x ∈ (∆p)(∆p)f ↪→GX .

It is easy to check that G = (G, ε, δ) is a comonad.
Now, if A = AbGp and E = Hsing

0 : Top→ AbGp is the 0th singular homology functor,

Barr and Beck proved in [5] that Hn(X,Hsing
0 )G is the n− 1th singular homology group of

X.

The last example says that in preadditive categories, we do not have to prove that the
projective class is Kan to use theorem 4.10.

Example 4.14. Moore showed in [11] that if D is a preadditive category, then, every
simplicial object is X-Kan for all X ∈ ob D. Thus every projective class is Kan and we
can rewrite theorem 4.10 as:

Let G and K be two comonads on a preadditive category D such that PG = PK. If A
is a semi-abelian category and E : D → A a functor, then Hn(−, E)G and Hn(−, E)K are
naturally isomorphic for all n ∈ Z.
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5 Conclusion

Homology was first studied to count the number of holes in a topological space. Now,
it has many other applications in Mathematics. A natural way to generalise it is to use
Category Theory. Classically, homology is studied in abelian categories such as AbGp or
R-Mod. We exhibited in this essay another context where it can be done: semi-abelian
categories. As we have seen, the definition of semi-abelian category is less restrictive
than the one of abelian category in order to encompass examples such as Gp and LieAlg.
However, there are sufficiently many axioms to have an image factorisation, to prove their
finite completeness and cocompleteness and to let the Five, Nine and Snake lemmas hold.

In this essay, we focused on a particular kind of homology: the one arising from a
simplicial object and especially a simplicial object made from a comonad. This is called
the comonadic homology. The main result of this essay gives a condition on two comonads
to induce the same homology. But there is much more to say about comonadic homology.
Indeed, we could have focused this essay on the functorial dependence of Hn(−, E)G in E
and its properties of G-acyclicity and G-connectedness. We could also have compared it
to the case where A is abelian. With this additional hypothesis, Barr and Beck proved in
[5] that we no longer need the Kan condition in theorem 4.10.

Comonadic homology is not the only way to define a homology in semi-abelian cate-
gories. Indeed, we can extend the well-known Hopf formula to higher dimensions to define
a homology theory in semi-abelian categories. We can prove (see [1]) that they coincide
whenever they are both defined, which gives two different ways to study the same object.
Two other definitions of homology are possible in the semi-abelian context. One uses
Galois groupoids while the other one is constructed from a satellite. For more details, we
refer to [1].
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